MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study

阻止力 质子疗法 质子 计算机科学 人工智能 核磁共振 物理 核物理学 电信 探测器
作者
Yuan Gao,Chih‐Wei Chang,Sagar Mandava,Raanan Marants,Jessica Scholey,Matthew Goette,Yang Lei,Hui Mao,Jeffrey D. Bradley,Tian Liu,Jun Zhou,Atchar Sudhyadhom,Xiaofeng Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:5
标识
DOI:10.1038/s41598-024-61869-8
摘要

Abstract Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的帽子完成签到,获得积分10
1秒前
4秒前
4秒前
茗姜完成签到,获得积分10
4秒前
drift完成签到,获得积分10
5秒前
orixero应助Getlogger采纳,获得10
6秒前
李梦媛发布了新的文献求助20
8秒前
8秒前
Mrmiss666发布了新的文献求助10
9秒前
ajing完成签到,获得积分10
10秒前
回颜轻生完成签到,获得积分10
10秒前
nanananana发布了新的文献求助10
11秒前
冰雪不容发布了新的文献求助10
12秒前
Jasper应助ddli采纳,获得10
15秒前
tangzl完成签到 ,获得积分10
17秒前
19秒前
土豆完成签到,获得积分10
20秒前
飞舞的青鱼完成签到,获得积分10
23秒前
24秒前
24秒前
ydq完成签到,获得积分10
25秒前
ddli发布了新的文献求助10
28秒前
衡阳完成签到,获得积分10
28秒前
优秀傲松完成签到,获得积分10
32秒前
微霞发布了新的文献求助10
33秒前
11完成签到 ,获得积分10
36秒前
Zw完成签到,获得积分10
39秒前
潇洒闭月完成签到,获得积分10
39秒前
chloe完成签到,获得积分10
40秒前
潇洒的诗桃应助清颜采纳,获得20
40秒前
Acer发布了新的文献求助30
40秒前
47秒前
Fairy完成签到 ,获得积分10
48秒前
包包琪发布了新的文献求助10
50秒前
50秒前
55秒前
慎之完成签到 ,获得积分10
56秒前
ling22发布了新的文献求助30
56秒前
whl发布了新的文献求助50
56秒前
小二郎应助excellent采纳,获得10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328572
关于积分的说明 10237098
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759130