MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study

阻止力 质子疗法 质子 计算机科学 人工智能 核磁共振 物理 核物理学 电信 探测器
作者
Yuan Gao,Chih‐Wei Chang,Sagar Mandava,Raanan Marants,Jessica Scholey,Matthew Goette,Yang Lei,Hui Mao,Jeffrey D. Bradley,Tian Liu,Jun Zhou,Atchar Sudhyadhom,Xiaofeng Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:5
标识
DOI:10.1038/s41598-024-61869-8
摘要

Abstract Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
TM发布了新的文献求助10
1秒前
2秒前
田某发布了新的文献求助10
2秒前
GodMG发布了新的文献求助10
3秒前
3秒前
赵欣月发布了新的文献求助10
3秒前
banbieshenlu完成签到,获得积分10
4秒前
懒羊羊发布了新的文献求助10
5秒前
蜂鸟发布了新的文献求助10
5秒前
浮游应助尊敬的寄松采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
dongqing12311完成签到,获得积分10
5秒前
鸡鱼蚝发布了新的文献求助10
7秒前
所所应助Wenyilong采纳,获得10
7秒前
8秒前
8秒前
Starry完成签到,获得积分10
9秒前
深情安青应助兴奋的沛蓝采纳,获得10
9秒前
啦啦啦发布了新的文献求助10
9秒前
qwe完成签到 ,获得积分10
9秒前
无情元菱完成签到 ,获得积分10
10秒前
David Zhang发布了新的文献求助200
11秒前
liuliu完成签到,获得积分10
11秒前
11秒前
传奇3应助骑着蜗牛追导弹采纳,获得10
12秒前
12秒前
ding应助chy采纳,获得10
12秒前
科研通AI5应助鸡鱼蚝采纳,获得10
13秒前
青果发布了新的文献求助10
13秒前
13秒前
科研通AI5应助TM采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
重要绿真发布了新的文献求助10
15秒前
yciDo发布了新的文献求助10
16秒前
baqiuzunzhe应助123采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184492
求助须知:如何正确求助?哪些是违规求助? 4370234
关于积分的说明 13609525
捐赠科研通 4222407
什么是DOI,文献DOI怎么找? 2315807
邀请新用户注册赠送积分活动 1314377
关于科研通互助平台的介绍 1263324