Mime: A flexible machine-learning framework to construct and visualize models for clinical characteristics prediction and feature selection

构造(python库) 特征选择 选择(遗传算法) 特征(语言学) 计算机科学 机器学习 人工智能 过程(计算) 程序设计语言 哲学 语言学 操作系统
作者
Hongwei Liu,Wei Zhang,Yihao Zhang,Abraham Ayodeji Adegboro,Deborah Oluwatosin Fasoranti,Luohuan Dai,Zhouyang Pan,Hongyi Liu,Yi Xiong,Wang Li,Kang Peng,Siyi Wanggou,Xuejun Li
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:23: 2798-2810 被引量:2
标识
DOI:10.1016/j.csbj.2024.06.035
摘要

The widespread use of high-throughput sequencing technologies has revolutionized the understanding of biology and cancer heterogeneity. Recently, several machine-learning models based on transcriptional data have been developed to accurately predict patients' outcome and clinical response. However, an open-source R package covering state-of-the-art machine-learning algorithms for user-friendly access has yet to be developed. Thus, we proposed a flexible computational framework to construct a machine learning-based integration model with elegant performance (Mime). Mime streamlines the process of developing predictive models with high accuracy, leveraging complex datasets to identify critical genes associated with prognosis. An in silico combined model based on de novo PIEZO1-associated signatures constructed by Mime demonstrated high accuracy in predicting the outcomes of patients compared with other published models. Furthermore, the PIEZO1-associated signatures could also precisely infer immunotherapy response by applying different algorithms in Mime. Finally, SDC1 selected from the PIEZO1-associated signatures demonstrated high potential as a glioma target. Taken together, our package provides a user-friendly solution for constructing machine learning-based integration models and will be greatly expanded to provide valuable insights into current fields. The Mime package is available on GitHub (https://github.com/l-magnificence/Mime).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助聪慧的凝海采纳,获得10
3秒前
可爱丸子完成签到,获得积分10
6秒前
7秒前
eurus发布了新的文献求助10
7秒前
zhentg完成签到,获得积分10
8秒前
10秒前
99giddens发布了新的文献求助50
10秒前
上官若男应助甜甜戎采纳,获得10
10秒前
xiaoyiyaxin完成签到 ,获得积分10
13秒前
ddl7完成签到,获得积分10
13秒前
科研通AI5应助Maomao采纳,获得10
14秒前
Owen应助eurus采纳,获得10
15秒前
JamesPei应助柯一一采纳,获得10
16秒前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
18秒前
科研通AI5应助qinxintang采纳,获得10
20秒前
科研通AI5应助自信猕猴桃采纳,获得10
21秒前
21秒前
22秒前
25秒前
GG发布了新的文献求助10
25秒前
25秒前
高高菠萝完成签到 ,获得积分10
25秒前
25秒前
ddd完成签到 ,获得积分10
25秒前
和风发布了新的文献求助10
26秒前
叉叉茶完成签到 ,获得积分10
26秒前
27秒前
28秒前
顾矜应助菠萝采纳,获得10
28秒前
xx完成签到,获得积分10
28秒前
29秒前
奂锐123发布了新的文献求助10
29秒前
RIYUCE发布了新的文献求助10
29秒前
29秒前
29秒前
无昵称发布了新的文献求助10
31秒前
咸鱼完成签到 ,获得积分10
31秒前
尛瞐慶成完成签到,获得积分10
32秒前
eurus发布了新的文献求助10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852