On the Electrochemical Activation of Nanoporous Reduced Graphene Oxide Electrodes Studied by In Situ/Operando Electrochemical Techniques

纳米孔 材料科学 石墨烯 电极 电化学 纳米孔 氧化物 纳米技术 电解质 化学工程 化学 物理化学 冶金 工程类
作者
María del Pilar Bernicola,Mailis Lounasvuori,Jessica Padilla‐Pantoja,José Santiso,Catherine Debiemme‐Chouvy,Hubert Perrot,Tristan Petit,José A. Garrido,Elena del Corro
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (46) 被引量:3
标识
DOI:10.1002/adfm.202408441
摘要

Abstract Due to the difficult access of the electrolyte into the nanoconfined space of nanoporous reduced graphene oxide (rGO) electrodes, achieving the optimal electrochemical performance of these devices becomes a challenge. In this work, the dynamics of interfacial‐governed phenomena are investigated during a voltage‐controlled electrochemical activation of nanoporous rGO electrodes that leads to an enhanced electrochemical performance in terms of areal capacitance and electrochemical impedance. In situ/operando characterization techniques are used to reveal the dynamics of the irreversible material changes introduced during the activation process, including ionic diffusion and water confinement within the nanopores, along with the reduction of oxygenated groups and the decrease of the rGO interlayer distance. Furthermore, operando techniques are used to uncover the origin of the complex polarization‐dependent dynamic response of rGO electrodes. The study reveals that the reversible protonation/deprotonation of remaining functional groups and the cation electro‐adsorption/desorption process in the graphene basal plane govern the pseudocapacitive performance of nanoporous rGO electrodes. This work brings new understanding of the complex interplay between surface chemistry, ion confinement, and desolvation processes occurring during electrochemical cycling in nanoporous rGO electrodes, offering new insights for designing high‐performing electrodes based on nanoporous rGO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助Snoval采纳,获得10
2秒前
Ade完成签到,获得积分10
2秒前
YY完成签到 ,获得积分10
3秒前
安静的冰蓝完成签到 ,获得积分10
6秒前
aa完成签到,获得积分10
6秒前
都是发布了新的文献求助10
7秒前
8秒前
脸小呆呆完成签到 ,获得积分10
10秒前
Rookie应助冰柠檬采纳,获得10
10秒前
明白那就完成签到,获得积分20
15秒前
萨克斯先生先生完成签到,获得积分20
15秒前
徐佳乐完成签到,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
19秒前
都是完成签到,获得积分10
20秒前
YY完成签到,获得积分20
21秒前
22秒前
wanci应助lhn采纳,获得10
22秒前
24秒前
冰柠檬完成签到,获得积分20
24秒前
27秒前
悠明夜月完成签到 ,获得积分10
27秒前
姜程璐发布了新的文献求助10
27秒前
背后语雪完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777877
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214219
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304