气凝胶
材料科学
层状结构
保温
热稳定性
复合材料
热导率
吸收(声学)
反射损耗
消散
热的
电磁辐射
光电子学
图层(电子)
光学
化学工程
复合数
物理
工程类
气象学
热力学
作者
Haodong Gu,Tian Li,Qiuqi Zhang,Xiao You,Mengmeng Wang,Shaoming Dong,Jinshan Yang
出处
期刊:Small
[Wiley]
日期:2024-06-07
被引量:14
标识
DOI:10.1002/smll.202402423
摘要
Abstract Electromagnetic protection in extreme environments requires materials with excellent thermal insulation capability and mechanical property to withstand severe temperature fluctuations and complex external stresses. Achieving strong electromagnetic wave absorption (EMA) while sustaining these exceptional properties remains a significant challenge. Herein, a facile approach is demonstrated to fabricate a biomimetic leaf‐vein MXene/CNTs/PI (MCP) aerogel with parallel venations through bidirectional freeze‐casting method. Due to its multi‐arch lamellar structure and parallel venations within the aerogel layers, the ultralight MCP aerogel (16.9 mg·cm −3 ) achieves a minimum reflection loss (RL min ) of −75.8 dB and a maximum effective absorption bandwidth (EAB max ) of 7.14 GHz with an absorber content of only 2.4 wt%, which also exhibits superelasticity and structural stability over a wide temperature range from −196 to 400 °C. Moreover, this unique structure facilitates rapid heat dissipation within the layers, while significantly impeding heat transfer between adjacent layers, achieving an ultralow thermal conductivity of 15.3 mW·m −1 ·K −1 for thermal superinsulation. The combination of excellent EMA performance, robust structural stability, and thermal superinsulation provides a potential design scheme under extreme conditions, especially in aerospace applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI