Recent Advances in the Application of Machine Learning to Crystal Behavior and Crystallization Process Control

结晶 过程(计算) 材料科学 过程控制 Crystal(编程语言) 计算机科学 纳米技术 结晶学 工艺工程 化学 工程类 化学工程 程序设计语言
作者
Meijin Lu,Silin Rao,Hong Yue,Junjie Han,Jingtao Wang
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:24 (12): 5374-5396 被引量:7
标识
DOI:10.1021/acs.cgd.3c01251
摘要

Crystals are integral to a variety of industrial applications, such as the development of pharmaceuticals and advancements in material science. To anticipate crystal behavior and pinpoint effective crystallization techniques, a thorough investigation of crystal structures, properties, and the associated processes is essential. However, conventional methods like experimental procedures and quantum mechanics calculations, while crucial, can be expensive and time-consuming. In response, machine learning has risen as an effective alternative, complementing the traditional approaches based on quantum mechanics and classical force fields. In the recent years, the deployment of machine learning in the realm of crystallization has yielded notable progress. This review offers a concise overview of the application of machine learning techniques in crystallization, focusing on the past five years. Our analysis of the literature indicates that machine learning has accelerated the prediction of crystal structures by streamlining the generation and evaluation of structures. Additionally, it has facilitated the prediction of key crystal properties such as solubility, melting point, and habit. The review further explores the role of machine learning in refining the control and optimization of crystallization processes, highlighting the restrictions of conventional algorithms and sensing technologies. The advantages of end-to-end processing for enhancing the accuracy of predictions and the combination of data-driven with mechanism-based models for robustness are also considered. In summary, this review provides insights into the current state of machine learning in the field of intelligent crystallization and suggests pathways for future research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵楠完成签到 ,获得积分10
刚刚
4秒前
六六六发布了新的文献求助30
6秒前
7秒前
杨幂完成签到,获得积分10
9秒前
开心雨发布了新的文献求助10
10秒前
Yi发布了新的文献求助10
13秒前
霍三石完成签到,获得积分10
13秒前
ygp完成签到 ,获得积分10
13秒前
16秒前
无限毛豆完成签到 ,获得积分10
17秒前
糖炒李子完成签到 ,获得积分10
18秒前
19秒前
Raine完成签到,获得积分10
20秒前
21秒前
22秒前
平淡的翠霜完成签到,获得积分10
22秒前
无花果应助小西米采纳,获得10
23秒前
洁净的冰绿完成签到,获得积分10
23秒前
24秒前
yyymmma发布了新的文献求助10
24秒前
乱武完成签到,获得积分20
25秒前
llchen完成签到,获得积分0
26秒前
新威宝贝发布了新的文献求助10
27秒前
和谐沛芹发布了新的文献求助10
28秒前
song完成签到,获得积分10
28秒前
29秒前
Akim应助赵懂采纳,获得10
29秒前
李健的小迷弟应助eurus采纳,获得10
30秒前
ChiHiRo9Q应助绮户流年采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
32秒前
大模型应助科研通管家采纳,获得10
32秒前
32秒前
iNk应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
眼睛大抽屉完成签到,获得积分10
33秒前
开心雨完成签到 ,获得积分10
34秒前
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852