Small Object Detection Method Based on Global Multi-level Perception and Dynamic Region Aggregation

计算机科学 计算机视觉 感知 人工智能 目标检测 对象(语法) 模式识别(心理学) 神经科学 生物
作者
Zhiqin Zhu,Renzhong Zheng,Guanqiu Qi,Shuang Li,Yuanyuan Li,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 10011-10022 被引量:7
标识
DOI:10.1109/tcsvt.2024.3402097
摘要

In the field of object detection, detecting small objects is an important and challenging task. However, most existing methods tend to focus on designing complex network structures, lack attention to global representation, and ignore redundant noise and dense distribution of small objects in complex networks. To address the above problems, this paper proposes a small object detection method based on global multi-level perception and dynamic region aggregation. The method achieves accurate detection by dynamically aggregating effective features within a region while fully perceiving the features. This method mainly consists of two modules: global multi-level perception module and dynamic region aggregation module. In the global multi-level perception module, self-attention is used to perceive the global region, and its linear transformation is mapped through a convolutional network to increase the local details of global perception, thereby obtaining more refined global information. The dynamic region aggregation module, devised with a sparse strategy in mind, selectively interacts with relevant features. This design allows aggregation of key features of individual instances, effectively mitigating noise interference. Consequently, this approach addresses the challenges associated with densely distributed targets and enhances the model's ability to discriminate on a fine-grained level. This proposed method was evaluated on two popular datasets. Experimental results show that this method outperforms state-of-the-art methods in small object detection tasks, demonstrating good performance and potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fzzf完成签到,获得积分10
2秒前
风信子完成签到,获得积分10
2秒前
2秒前
坚定芷烟发布了新的文献求助10
2秒前
3秒前
天天快乐应助ccccc采纳,获得30
3秒前
3秒前
阔达代芹完成签到 ,获得积分10
3秒前
jake完成签到,获得积分10
3秒前
511完成签到,获得积分10
3秒前
爱蜜莉亚QAQ完成签到,获得积分10
3秒前
successor8888关注了科研通微信公众号
3秒前
呀呀呀呀完成签到,获得积分10
4秒前
谦让的鹏煊完成签到,获得积分10
4秒前
yy完成签到 ,获得积分10
4秒前
Zz完成签到,获得积分10
5秒前
余松林完成签到,获得积分10
5秒前
sunwending完成签到,获得积分10
5秒前
叶子完成签到,获得积分10
5秒前
5秒前
望着拥有完成签到,获得积分10
6秒前
项听蓉完成签到,获得积分10
6秒前
silver_lin完成签到,获得积分10
7秒前
tian发布了新的文献求助10
7秒前
木木完成签到,获得积分10
7秒前
晚风完成签到,获得积分10
7秒前
slow完成签到,获得积分10
8秒前
平常的不评完成签到,获得积分10
8秒前
8秒前
娟儿完成签到 ,获得积分10
8秒前
Emma完成签到 ,获得积分10
8秒前
9秒前
qinkoko完成签到,获得积分10
9秒前
as9988776654完成签到 ,获得积分10
9秒前
欢喜可愁完成签到 ,获得积分10
9秒前
TheDing完成签到,获得积分10
9秒前
11秒前
慢歌完成签到 ,获得积分10
11秒前
Lucas应助晚风采纳,获得10
12秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788560
求助须知:如何正确求助?哪些是违规求助? 3333813
关于积分的说明 10264224
捐赠科研通 3049806
什么是DOI,文献DOI怎么找? 1673705
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760535