Multi-scale quaternion CNN and BiGRU with cross self-attention feature fusion for fault diagnosis of bearing

人工智能 四元数 方位(导航) 特征(语言学) 断层(地质) 计算机科学 计算机视觉 融合 比例(比率) 模式识别(心理学) 地质学 数学 地理 地图学 哲学 地震学 语言学 几何学
作者
Huanbai Liu,Fanlong Zhang,Yin Tan,Lian‐Hua Huang,Yan Li,Guoheng Huang,Shenghong Luo,An Zeng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086138-086138
标识
DOI:10.1088/1361-6501/ad4c8e
摘要

Abstract In recent years, deep learning has led to significant advances in bearing fault diagnosis (FD). Most techniques aim to achieve greater accuracy. However, they are sensitive to noise and lack robustness, resulting in insufficient domain adaptation and anti-noise ability. The comparison of studies reveals that giving equal attention to all features does not differentiate their significance. In this work, we propose a novel FD model by integrating multi-scale quaternion convolutional neural network (MQCNN), bidirectional gated recurrent unit (BiGRU), and cross self-attention feature fusion (CSAFF). We have developed innovative designs in two modules, namely MQCNN and CSAFF. Firstly, MQCNN applies quaternion convolution to multi-scale architecture for the first time, aiming to extract the rich hidden features of the original signal from multiple scales. Then, the extracted multi-scale information is input into CSAFF for feature fusion, where CSAFF innovatively incorporates cross self-attention mechanism to enhance discriminative interaction representation within features. Finally, BiGRU captures temporal dependencies while a softmax layer is employed for fault classification, achieving accurate FD. To assess the efficacy of our approach, we experiment on three public datasets (CWRU, MFPT, and Ottawa) and compare it with other excellent methods. The results confirm its state-of-the-art, which the average accuracies can achieve up to 99.99%, 100%, and 99.21% on CWRU, MFPT, and Ottawa datasets. Moreover, we perform practical tests and ablation experiments to validate the efficacy and robustness of the proposed approach. Code is available at https://github.com/mubai011/MQCCAF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gty发布了新的文献求助10
1秒前
ZZM完成签到,获得积分10
1秒前
ao完成签到,获得积分10
1秒前
2秒前
2秒前
TZ发布了新的文献求助10
3秒前
3秒前
阳光雨完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
7秒前
aK3完成签到,获得积分20
8秒前
丘比特应助STAN采纳,获得10
8秒前
8秒前
思源应助嗯哼采纳,获得10
8秒前
阳光雨发布了新的文献求助10
9秒前
难过风华完成签到,获得积分10
10秒前
aK3发布了新的文献求助10
11秒前
cumtxzs发布了新的文献求助10
11秒前
帅气冰珍发布了新的文献求助10
12秒前
大模型应助健忘的板凳采纳,获得10
13秒前
15秒前
领导范儿应助沉默的芒果采纳,获得10
15秒前
浮生发布了新的文献求助10
15秒前
蜗牛完成签到,获得积分10
16秒前
在水一方应助帅气冰珍采纳,获得10
16秒前
英姑应助帅帅中带点小坏采纳,获得10
17秒前
17秒前
乐乐应助bingsu108采纳,获得10
17秒前
Ava应助cumtxzs采纳,获得10
18秒前
远山笑你完成签到 ,获得积分10
19秒前
lianmeiliu发布了新的文献求助10
20秒前
20秒前
22秒前
adi完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149