A Graph-based Hyperspectral Change Detection Framework Using Difference Augmentation and Progressive Reconstruction With Limited Labels

高光谱成像 计算机科学 判别式 图形 人工智能 模式识别(心理学) 理论计算机科学
作者
Bin Yang,Xinwei Cheng,Wei Chen,Xin Ye
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2024.3403237
摘要

Identifying land cover changes based on hyperspectral images (HSIs) has been a research hotspot in the field of remote sensing. In recent years, deep learning-based change detection (CD) methods have advanced the development of this subject due to their powerful feature representation capabilities. However, it is difficult for these methods to mine changed information between bi-temporal HSIs with limited labels. To overcome this limitation, we propose a graph-based hyperspectral CD framework using difference augmentation and progressive reconstruction (ARCD), which enhance the recognition ability of changes of HSIs with limited labels. This framework consists of three components: 1) a dual-brach multi-scale dynamic GCN (DMGCN) sub-network, which is developed to emphasize the changed information and learn global features of HSIs at various scales; 2) a difference augmentation feature fusion (DAFF) module, which is designed to fuse spectral-spatial augmentation information and the difference information to accurately capture discriminative features for the changes between bi-temporal HSIs; 3) a progressive contextual information attention reconstruction (PCAR) module, which is proposed to focus on key information in the context, and progressively reconstruct multi-level features to reduce semantic gaps between different scale features. ARCD not only enhances the representation ability of changed features, but also alleviates the demand for HSI labels. We test the performance of ARCD on four hyperspectral datasets. Quantitative and qualitative results reveal that it outperforms some state-of-the-art methods with limited labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒发布了新的文献求助10
刚刚
刚刚
bo_okerzzz发布了新的文献求助10
1秒前
优美的安梦完成签到,获得积分10
1秒前
1秒前
ZJPPPP发布了新的文献求助10
2秒前
桐桐应助活力的流沙采纳,获得10
3秒前
56完成签到,获得积分10
3秒前
3秒前
5秒前
黄垚发布了新的文献求助10
5秒前
懒人发布了新的文献求助50
6秒前
7秒前
科研通AI5应助单薄天宇采纳,获得30
7秒前
8秒前
大个应助流年采纳,获得10
8秒前
nancy wang发布了新的文献求助10
8秒前
8秒前
9秒前
houfei发布了新的文献求助10
9秒前
9秒前
李健的小迷弟应助黄垚采纳,获得10
9秒前
研友_VZG7GZ应助大渡河采纳,获得10
11秒前
0per发布了新的文献求助10
11秒前
12秒前
Annie发布了新的文献求助30
13秒前
康康发布了新的文献求助30
14秒前
xvxgfcghv发布了新的文献求助10
15秒前
0per完成签到,获得积分10
15秒前
16秒前
科研通AI5应助ye采纳,获得50
17秒前
smile发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
柒柒完成签到,获得积分10
21秒前
jackynl发布了新的文献求助10
21秒前
22秒前
ZhouYW应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814219
求助须知:如何正确求助?哪些是违规求助? 3358448
关于积分的说明 10394718
捐赠科研通 3075691
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812972
科研通“疑难数据库(出版商)”最低求助积分说明 767416