Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis

BETA(编程语言) 统计 二进制数 概率逻辑 贝塔分布 数学 计算机科学 算术 程序设计语言
作者
Qi Zhang,Richard F. MacLehose,Lindsay J. Collin,Thomas P. Ahern,Timothy L. Lash
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (2): 237-244 被引量:1
标识
DOI:10.1097/ede.0000000000001818
摘要

Background: To account for misclassification of dichotomous variables using probabilistic bias analysis, beta distributions are often assigned to bias parameters (e.g., positive and negative predictive values) based on data from an internal validation substudy. Due to the small sample size of validation substudies, zero-cell frequencies can occur. In these scenarios, it may be helpful to assign prior distributions or apply continuity corrections to the predictive value estimates. Methods: We simulated cohort studies of varying sizes, with a binary exposure and outcome and a true risk ratio (RR) = 2.0, as well as internal validation substudies, to account for exposure misclassification. We conducted bias adjustment under five approaches assigning prior distributions to the positive and negative predictive value parameters: (1) conventional method (i.e., no prior), (2) uniform prior beta ( α = 1, β = 1), (3) Jeffreys prior beta ( α = 0.5, β = 0.5), (4) using Jeffreys prior as a continuity correction only when zero cells occurred, and (5) using the uniform prior as a continuity correction only when zero cells occurred. We evaluated performance by measuring coverage probability, bias, and mean squared error. Results: For sparse validation data, methods (2)–(5) all had better coverage and lower mean squared error than the conventional method, with the uniform prior (2) yielding the best performance. However, little difference between methods was observed when the validation substudy did not contain zero cells. Conclusion: If sparse data are expected in a validation substudy, using a uniform prior for the beta distribution of bias parameters can improve the validity of bias-adjusted measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴宵完成签到,获得积分0
1秒前
1秒前
黄汉良完成签到,获得积分10
2秒前
Owen应助zhscu采纳,获得10
3秒前
田様应助我要做科研狗采纳,获得10
4秒前
无语的问雁完成签到,获得积分10
6秒前
7秒前
8秒前
彭于晏应助别说话采纳,获得30
9秒前
CipherSage应助haoran采纳,获得10
10秒前
协和_子鱼发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
花遇和风完成签到 ,获得积分10
14秒前
Focus_BG完成签到,获得积分10
15秒前
mengjianfen发布了新的文献求助10
17秒前
17秒前
zhscu发布了新的文献求助10
18秒前
大模型应助猪猪hero采纳,获得10
18秒前
BowieHuang应助nono采纳,获得10
21秒前
22秒前
22秒前
25秒前
27秒前
28秒前
结王三完成签到,获得积分10
28秒前
30秒前
31秒前
一一完成签到 ,获得积分10
31秒前
33秒前
haoran发布了新的文献求助10
36秒前
李健应助刀剑采纳,获得10
36秒前
猪猪hero发布了新的文献求助10
37秒前
41秒前
花遇和风关注了科研通微信公众号
44秒前
Jodie发布了新的文献求助10
44秒前
Choi完成签到,获得积分10
45秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631