基因组
密码子使用偏好性
生物
系统发育树
遗传学
进化生物学
基因
出处
期刊:Genes
[MDPI AG]
日期:2025-02-02
卷期号:16 (2): 186-186
标识
DOI:10.3390/genes16020186
摘要
Background: The codon preference of chloroplast genomes not only reflects mutation patterns during the evolutionary processes of species but also significantly affects the efficiency of gene expression. This characteristic holds significant scientific importance in the application of chloroplast genetic engineering and the genetic improvement of species. Chloranthus, an ancestral angiosperm with significant economic, medicinal, and ornamental value, belongs to the basal angiosperms. However, the codon usage patterns among Chloranthus species have remained unclear. Methods: To investigate codon usage bias and its influencing factors in Chloranthus chloroplast genomes, we utilized CodonW, CUSP, and SPSS software to analyze the chloroplast genomes of seven Chloranthus species. Results: In this study, we reported and characterized the complete chloroplast genome of the Chinese endemic species Chloranthus angustifolius. The phylogenetic tree based on the whole chloroplast genomes showed that C. angustifolius is sister to Chloranthus fortunei, and the genus Chloranthus is divided into two major clades, consistent with previous studies. Our results revealed that the GC content at different codon positions across all seven Chloranthus species was less than 50%, with GC1 > GC2 > GC3. Additionally, the average effective number of codons (ENC) values exceeded 45. A total of 10 shared optimal codons were identified, nine of which end with A or U. PR2-plot, ENC-plot, and neutrality plot analyses indicated that natural selection primarily influenced codon usage bias in the chloroplast genomes of Chloranthus. Conclusions: We newly obtained the chloroplast genome of C. angustifolius and proposed that natural selection played a key role in codon usage patterns in Chloranthus species. These findings contribute to our understanding of evolutionary history and genetic diversity within this genus.
科研通智能强力驱动
Strongly Powered by AbleSci AI