SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans

医学 病变 脊髓 髓内棒 磁共振成像 矢状面 放射科 脊髓损伤 分割 绳索 腰椎 外科 人工智能 计算机科学 精神科
作者
Enamundram Naga Karthik,Jan Valošek,Andrew C. Smith,Dario Pfyffer,Simon Schading,Lynn Farner,Kenneth A. Weber,Patrick Freund,Julien Cohen‐Adad
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240005
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023 from 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 males). The data consisted of T2-weighted MRI acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic and lumbar spine. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg and contrast-agnostic, all part of the Spinal Cord Toolbox). Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results SCIseg achieved a Dice score of 0.92 ± 0.07 (mean ± SD) and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( P = .42) and maximal axial damage ratio ( P = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and extracted relevant lesion biomarkers (namely, lesion volume, lesion length, and maximal axial damage ratio). SCIseg is open-source and accessible through the Spinal Cord Toolbox (v6.2 and above). Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
k13524完成签到,获得积分10
1秒前
淡水鱼完成签到 ,获得积分10
1秒前
1秒前
105度余温完成签到,获得积分10
1秒前
guoanhong发布了新的文献求助10
2秒前
爆米花应助吕小软采纳,获得10
2秒前
3秒前
4秒前
XavierLee发布了新的文献求助10
4秒前
科研通AI5应助Stringgggg采纳,获得10
5秒前
5秒前
彭于晏应助丫丫采纳,获得10
5秒前
Nana完成签到,获得积分10
6秒前
Hello应助咖啡机检查佛破采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
coconut完成签到 ,获得积分10
7秒前
网上飞完成签到,获得积分10
8秒前
小米粥完成签到,获得积分10
8秒前
超级小狗发布了新的文献求助10
8秒前
XU完成签到,获得积分20
8秒前
荼靡落时完成签到,获得积分10
8秒前
聪明的傲白完成签到,获得积分10
10秒前
木目丶发布了新的文献求助10
10秒前
晓兴兴完成签到,获得积分10
10秒前
10秒前
甜晞发布了新的文献求助10
11秒前
兮兮发布了新的文献求助10
11秒前
cheng完成签到,获得积分10
11秒前
11秒前
zdq10068发布了新的文献求助10
11秒前
咕噜咕噜发布了新的文献求助10
11秒前
充电宝应助孤独的寻双采纳,获得10
12秒前
12秒前
12秒前
江峰发布了新的文献求助10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868