亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans

医学 病变 脊髓 髓内棒 磁共振成像 矢状面 放射科 脊髓损伤 分割 绳索 腰椎 外科 人工智能 计算机科学 精神科
作者
Enamundram Naga Karthik,Jan Valošek,Andrew C. Smith,Dario Pfyffer,Simon Schading‐Sassenhausen,Lynn Farner,Kenneth A. Weber,Patrick Freund,Julien Cohen‐Adad
出处
期刊:Radiology [Radiological Society of North America]
被引量:10
标识
DOI:10.1148/ryai.240005
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023 from 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 males). The data consisted of T2-weighted MRI acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic and lumbar spine. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg and contrast-agnostic, all part of the Spinal Cord Toolbox). Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results SCIseg achieved a Dice score of 0.92 ± 0.07 (mean ± SD) and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( P = .42) and maximal axial damage ratio ( P = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and extracted relevant lesion biomarkers (namely, lesion volume, lesion length, and maximal axial damage ratio). SCIseg is open-source and accessible through the Spinal Cord Toolbox (v6.2 and above). Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
14秒前
天天快乐应助读书的时候采纳,获得10
16秒前
科研通AI5应助读书的时候采纳,获得10
34秒前
科研通AI5应助读书的时候采纳,获得10
53秒前
1分钟前
zx完成签到,获得积分10
1分钟前
zx发布了新的文献求助10
1分钟前
科研通AI6应助读书的时候采纳,获得10
1分钟前
小榕树完成签到,获得积分10
1分钟前
1分钟前
yuanquaner完成签到,获得积分10
1分钟前
隐形曼青应助读书的时候采纳,获得10
1分钟前
共享精神应助coollz采纳,获得10
1分钟前
yuanquaner发布了新的文献求助10
1分钟前
1分钟前
coollz发布了新的文献求助10
1分钟前
传奇3应助coollz采纳,获得10
1分钟前
2分钟前
科研通AI6应助zx采纳,获得10
2分钟前
完美路人发布了新的文献求助10
2分钟前
科研通AI6应助读书的时候采纳,获得10
2分钟前
李健应助xfcy采纳,获得10
2分钟前
orixero应助读书的时候采纳,获得10
2分钟前
zwang688完成签到,获得积分10
2分钟前
酷炫小馒头完成签到,获得积分10
3分钟前
3分钟前
NexusExplorer应助读书的时候采纳,获得10
3分钟前
3分钟前
Cupid发布了新的文献求助10
3分钟前
Cupid完成签到,获得积分10
3分钟前
3分钟前
xiaoyan发布了新的文献求助10
3分钟前
科研通AI6应助读书的时候采纳,获得10
3分钟前
科研通AI6应助读书的时候采纳,获得10
3分钟前
4分钟前
务实的奇迹完成签到 ,获得积分10
4分钟前
战晓发布了新的文献求助10
4分钟前
战晓完成签到,获得积分10
4分钟前
852应助kukudou2采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935381
求助须知:如何正确求助?哪些是违规求助? 4202793
关于积分的说明 13058829
捐赠科研通 3977706
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107340