清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落落完成签到 ,获得积分0
36秒前
42秒前
优雅山柏发布了新的文献求助10
48秒前
1分钟前
皮卡丘完成签到,获得积分10
1分钟前
努力努力再努力完成签到,获得积分10
1分钟前
Leon Lai完成签到,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
岳莹晓完成签到 ,获得积分10
1分钟前
陈陈陈完成签到 ,获得积分10
2分钟前
foyefeng完成签到 ,获得积分10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
3分钟前
非洲大象发布了新的文献求助50
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
非洲大象完成签到,获得积分10
3分钟前
violetlishu完成签到 ,获得积分10
3分钟前
有只小狗完成签到,获得积分10
4分钟前
hunbaekkkkk完成签到 ,获得积分10
5分钟前
orixero应助ma采纳,获得10
5分钟前
5分钟前
杨志坚完成签到 ,获得积分10
5分钟前
热狗完成签到 ,获得积分10
5分钟前
6分钟前
星辰大海应助葛力采纳,获得10
6分钟前
lilaccalla完成签到 ,获得积分10
7分钟前
7分钟前
ma发布了新的文献求助10
7分钟前
8分钟前
dylanqy发布了新的文献求助30
8分钟前
8分钟前
优雅山柏发布了新的文献求助10
8分钟前
8分钟前
zoe完成签到 ,获得积分10
9分钟前
王_123123123123w完成签到 ,获得积分10
9分钟前
dylanqy完成签到,获得积分10
9分钟前
huangzsdy完成签到,获得积分10
9分钟前
ChiHiRo9Q完成签到,获得积分10
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603