糖基转移酶
基因
生物
鉴定(生物学)
生物化学
植物
作者
Lin Cong,Sichen Li,Zhi‐Tang Wei,Shi‐Jiang Yu,Zehao Huang,Yangyang Cui,Qiqi Yang,Li‐Li Ding,Qi Pan,Liu Liu,Li Yang,Chun Ran
摘要
Cyetpyrafen is a newly developed acaricide. The citrus red mite, Panonychus citri (McGregor), is an important citrus pest that has developed resistance to cyetpyrafen. Uridine diphosphate-glycosyltransferases (UGTs) have been widely reported to be associated with resistance to multiple acaricides. However, it has been rarely documented that UGT genes participate in cyetpyrafen resistance in P. citri. In this study, a significantly upregulated UGT gene, PcUGT201E1, was identified in P. citri using transcriptome analysis. Expression of PcUGT201E1 was significantly upregulated at all stages in the cyetpyrafen-resistant strain and silencing PcUGT201E1 significantly increased the susceptibility of P. citri to cyetpyrafen. Molecular docking of PcUGT201E1 with uridine diphosphate glucose (UDPG) and cyetpyrafen indicated that UDPG and cyetpyrafen can interact with PcUGT202E1 via hydrogen bonds. Heterologous expression and in vitro functional assays revealed that enzyme activity could be inhibited by cyetpyrafen and that recombinant PcUGT201E1 can deplete cyetpyrafen. These results indicated that PcUGT201E1 participates in cyetpyrafen resistance in P. citri by sequestration, and provided a molecular foundation for understanding cyetpyrafen resistance in P. citri. © 2025 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI