Deep Learning-Assisted Fluorescence Single-Particle Detection of Fumonisin B1 Powered by Entropy-Driven Catalysis and Argonaute

化学 荧光 催化作用 阿尔戈瑙特 纳米技术 组合化学 生物化学 核糖核酸 基因 量子力学 RNA干扰 物理 材料科学
作者
Xianfeng Lin,Lixin Kang,Jiaqi Feng,Nuo Duan,Zhouping Wang,Shijia Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (7): 4066-4074 被引量:14
标识
DOI:10.1021/acs.analchem.4c05913
摘要

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B1 (FB1) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB1 releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Thermus thermophilus Argonaute (TtAgo) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation. Subsequently, through fast and accurate counting of red bright particles in the captured confocal fluorescence images from the supernatant via a YOLOv9 deep learning model, the sensitive and specific detection of FB1 could be realized. This approach has a limit of detection (LOD) of 0.89 pg/mL with a linear range from 1 pg/mL to 100 ng/mL, and satisfactory recovery (87.2-113.5%) in real food samples indicates its practicality. The integration of the aptamer and EDC with TtAgo broadens the target range of Argonaute and enhances sensitivity. Furthermore, incorporating deep learning significantly improves the analytical efficiency of single-particle detection. This work provides a promising analytical strategy in biosensing and promotes the application of fluorescence single-particle detection in food safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗的发夹完成签到,获得积分10
1秒前
1秒前
jeff发布了新的文献求助10
1秒前
sniffgo发布了新的文献求助30
2秒前
Summer完成签到,获得积分10
2秒前
上官若男应助HYZ采纳,获得10
2秒前
杨123完成签到,获得积分10
2秒前
Xenia应助邦尼帕皮采纳,获得10
2秒前
bkagyin应助berg采纳,获得10
3秒前
情怀应助自信的寄风采纳,获得10
3秒前
高大代容发布了新的文献求助10
3秒前
我想毕业完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
EnboFan发布了新的文献求助10
4秒前
枫丶完成签到 ,获得积分10
4秒前
5秒前
小芋发布了新的文献求助20
5秒前
小吉利发布了新的文献求助10
5秒前
1111chen完成签到 ,获得积分10
5秒前
素心发布了新的文献求助10
5秒前
6秒前
充电宝应助gmc采纳,获得10
6秒前
6秒前
7秒前
AAA111122完成签到,获得积分10
7秒前
7秒前
8秒前
烂漫寄松完成签到,获得积分10
8秒前
8秒前
帅气的秘密完成签到,获得积分10
8秒前
qqqqqq完成签到,获得积分10
10秒前
高大代容完成签到,获得积分20
10秒前
流泪猫猫头完成签到,获得积分10
10秒前
AAA111122发布了新的文献求助30
10秒前
顺利的翎完成签到,获得积分10
10秒前
赘婿应助K. G.采纳,获得10
11秒前
无限南霜完成签到,获得积分10
11秒前
西西发布了新的文献求助10
11秒前
科研通AI2S应助张尧摇摇摇采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409