Deep Learning-Assisted Fluorescence Single-Particle Detection of Fumonisin B1 Powered by Entropy-Driven Catalysis and Argonaute

化学 荧光 催化作用 阿尔戈瑙特 纳米技术 组合化学 生物化学 核糖核酸 基因 量子力学 RNA干扰 物理 材料科学
作者
Xianfeng Lin,Lixin Kang,Jiaqi Feng,Nuo Duan,Zhouping Wang,Shijia Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05913
摘要

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B1 (FB1) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB1 releases the trigger sequence to mediate EDC cycle to produce numerous 5′-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Thermus thermophilus Argonaute (TtAgo) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation. Subsequently, through fast and accurate counting of red bright particles in the captured confocal fluorescence images from the supernatant via a YOLOv9 deep learning model, the sensitive and specific detection of FB1 could be realized. This approach has a limit of detection (LOD) of 0.89 pg/mL with a linear range from 1 pg/mL to 100 ng/mL, and satisfactory recovery (87.2–113.5%) in real food samples indicates its practicality. The integration of the aptamer and EDC with TtAgo broadens the target range of Argonaute and enhances sensitivity. Furthermore, incorporating deep learning significantly improves the analytical efficiency of single-particle detection. This work provides a promising analytical strategy in biosensing and promotes the application of fluorescence single-particle detection in food safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈平灵完成签到,获得积分10
1秒前
天天快乐应助当当采纳,获得10
1秒前
4秒前
4秒前
羊羊羊发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
666完成签到,获得积分10
5秒前
从容不乐发布了新的文献求助10
5秒前
NiuHui给NiuHui的求助进行了留言
6秒前
fanfan完成签到,获得积分20
6秒前
酷小裤完成签到,获得积分10
7秒前
7秒前
Leoniko完成签到 ,获得积分10
7秒前
8秒前
科研小白完成签到 ,获得积分10
8秒前
平常平凡发布了新的文献求助10
8秒前
大个应助yuanjingnan采纳,获得10
8秒前
9秒前
巧克力餐包完成签到,获得积分10
10秒前
ssss完成签到,获得积分10
11秒前
11秒前
yyy发布了新的文献求助10
12秒前
lxhhh发布了新的文献求助10
12秒前
13秒前
13秒前
多看点文献吧完成签到,获得积分10
14秒前
14秒前
ding应助火山羊采纳,获得10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助50
15秒前
刘雪应助文件撤销了驳回
16秒前
chenyufeng完成签到,获得积分10
16秒前
17秒前
东风徐来发布了新的文献求助200
17秒前
李echo发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650