Deep Learning-Assisted Fluorescence Single-Particle Detection of Fumonisin B1 Powered by Entropy-Driven Catalysis and Argonaute

化学 荧光 催化作用 阿尔戈瑙特 纳米技术 组合化学 生物化学 核糖核酸 基因 量子力学 RNA干扰 物理 材料科学
作者
Xianfeng Lin,Lixin Kang,Jiaqi Feng,Nuo Duan,Zhouping Wang,Shijia Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05913
摘要

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B1 (FB1) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB1 releases the trigger sequence to mediate EDC cycle to produce numerous 5′-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Thermus thermophilus Argonaute (TtAgo) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation. Subsequently, through fast and accurate counting of red bright particles in the captured confocal fluorescence images from the supernatant via a YOLOv9 deep learning model, the sensitive and specific detection of FB1 could be realized. This approach has a limit of detection (LOD) of 0.89 pg/mL with a linear range from 1 pg/mL to 100 ng/mL, and satisfactory recovery (87.2–113.5%) in real food samples indicates its practicality. The integration of the aptamer and EDC with TtAgo broadens the target range of Argonaute and enhances sensitivity. Furthermore, incorporating deep learning significantly improves the analytical efficiency of single-particle detection. This work provides a promising analytical strategy in biosensing and promotes the application of fluorescence single-particle detection in food safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
syl发布了新的文献求助10
3秒前
KXX发布了新的文献求助10
5秒前
伊洛完成签到 ,获得积分20
5秒前
老张发布了新的文献求助10
7秒前
10秒前
syl完成签到,获得积分10
11秒前
12秒前
铲铲完成签到,获得积分10
12秒前
肉酱完成签到 ,获得积分10
13秒前
13秒前
皛宁完成签到 ,获得积分10
13秒前
在水一方应助江峰采纳,获得10
14秒前
ivying0209完成签到,获得积分10
15秒前
15秒前
法尔服务发布了新的文献求助10
16秒前
不吃胡萝卜完成签到 ,获得积分10
16秒前
XXX完成签到,获得积分10
20秒前
cookie发布了新的文献求助10
20秒前
晚星完成签到,获得积分10
21秒前
23秒前
老张完成签到,获得积分20
23秒前
冰魂应助cookie采纳,获得10
29秒前
深情安青应助gyj采纳,获得10
29秒前
29秒前
30秒前
Meng完成签到,获得积分10
30秒前
albertchan完成签到,获得积分10
30秒前
wangyyyy1发布了新的文献求助10
31秒前
Cy驳回了852应助
31秒前
乐乐应助微笑的冰枫采纳,获得10
34秒前
34秒前
hanzhipad应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
38秒前
39秒前
冰魂应助科研通管家采纳,获得20
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
39秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472