剪切模量
阻尼比
人工神经网络
土壤水分
材料科学
航程(航空)
剪切(地质)
岩土工程
拉伤
复合材料
地质学
声学
计算机科学
物理
土壤科学
振动
人工智能
内科学
医学
作者
Wei‐Qiang Feng,Meysam Bayat,Zohreh Mousavi,Bin Luo,Aiguo Li,Jian‐Fu Lin
标识
DOI:10.1080/17499518.2024.2443457
摘要
Dynamic properties, such as shear modulus and damping ratio, are critical for civil engineering applications and essential for accurate dynamic response analysis. This study introduces a novel Deep Neural Network (DNN) approach to predict the normalized shear modulus (G/Gmax) and damping ratio (D) of granular soils over a wide strain range. Utilising a comprehensive dataset from cyclic triaxial (CT) and resonant column (RC) tests, we developed a Deep Feed-Forward Neural Network (DFFNN) model. The model incorporates grading characteristics, shear strain, void ratio, mean effective confining pressure, consolidation stress ratio, and specimen preparation method as inputs. The DFFNN demonstrated high accuracy with testing results of 0.9830 for G/Gmax and 0.9396 for D, outperforming traditional empirical models and other intelligent techniques such as Shallow Neural Network (SNN), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR). This data-driven approach offers a robust and adaptable method for predicting the dynamic properties of granular soils across diverse conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI