A glutamine metabolish-associated prognostic model to predict prognosis and therapeutic responses of hepatocellular carcinoma

肝细胞癌 接收机工作特性 生物 肿瘤科 生存分析 比例危险模型 内科学 Lasso(编程语言) 癌症 癌症研究 医学 计算机科学 万维网
作者
Hao Xu,Hui‐Lin Pan,Fang Lian,Cangyuan Zhang,Chen Xiong,Wesley L. Cai
出处
期刊:Biology Direct [BioMed Central]
卷期号:19 (1) 被引量:1
标识
DOI:10.1186/s13062-024-00567-x
摘要

Hepatocellular carcinoma (HCC) ranks among the most lethal malignancies around the world. However, the current management strategies for predicting prognosis in HCC patients remain unreliable. Our study developed a robust prognostic model based on glutamine metabolism associated-genes (GMAGs), utilizing data from The Cancer Genome Atlas database. The prognostic values of model were validated through the databases of the Gene Expression Omnibus and International Cancer Genome Consortium via Kaplan‒Meier curves and receiver operating characteristic (ROC). The potential biological pathways associated with prognostic risk were investigated through different enrichment analysis, and Gene variation analysis. The correlation between prognostic model and therapeutic responses were analyzed. Quantitative real-time PCR (qRT-PCR) and cellular experiments were measured to analyze the GMAGs. Consequently, a prognostic model was constructed of 4 GMAGs (RRM1, RRM2, G6PD, and GPX7) through least absolute shrinkage and selection operator (LASSO) regression analysis. The Kaplan‒Meier curves and ROC curves showed a reliable predictive capacity of prognosis for HCC patients (p < 0.05). The enrichment analyses revealed a multitude of biological pathways that are significantly associated with cancer. Patients with high prognostic risk might be sensitive to immunotherapy (p < 0.05). The results of qRT-PCR revealed that all 4 GMAGs exhibited significantly higher expression levels in HCC samples compared to normal samples (p < 0.05). Moreover, the knockdown of RRM1 suppresses the progression of HCC cells. In this study, we developed a robust prognostic model for predicting the prognosis of HCC patients based on GMAGs, and identified RRM1 as a potential therapeutic target for HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红炉点血完成签到,获得积分10
刚刚
刻苦的新烟完成签到 ,获得积分10
2秒前
任十三完成签到 ,获得积分10
6秒前
ken131完成签到 ,获得积分0
12秒前
大个应助walker采纳,获得10
12秒前
是谁还没睡完成签到 ,获得积分10
15秒前
称心翠容完成签到,获得积分10
18秒前
20秒前
微笑的若魔完成签到 ,获得积分10
21秒前
h w wang完成签到,获得积分10
22秒前
bezoar完成签到 ,获得积分10
23秒前
嘟嘟完成签到 ,获得积分10
23秒前
天才小能喵完成签到 ,获得积分0
24秒前
可靠月亮完成签到,获得积分10
24秒前
fay1987完成签到,获得积分0
25秒前
llhh2024发布了新的文献求助10
26秒前
ly完成签到,获得积分10
27秒前
LXZ完成签到,获得积分10
27秒前
PetrichorF完成签到 ,获得积分10
32秒前
kaier完成签到 ,获得积分10
33秒前
d_fishier完成签到 ,获得积分10
33秒前
bigpluto完成签到,获得积分0
39秒前
zyjsunye发布了新的文献求助10
41秒前
41秒前
三三完成签到 ,获得积分10
46秒前
46秒前
老唐发布了新的文献求助10
46秒前
48秒前
今后应助科研通管家采纳,获得10
48秒前
甜甜圈完成签到 ,获得积分10
50秒前
齐济完成签到 ,获得积分10
51秒前
xiaoyi完成签到 ,获得积分10
55秒前
GLF完成签到 ,获得积分10
59秒前
顺利白竹完成签到 ,获得积分10
1分钟前
跳跃的语柔完成签到 ,获得积分10
1分钟前
1分钟前
Kai完成签到 ,获得积分10
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
小学生学免疫完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4499983
求助须知:如何正确求助?哪些是违规求助? 3950663
关于积分的说明 12245914
捐赠科研通 3609317
什么是DOI,文献DOI怎么找? 1985623
邀请新用户注册赠送积分活动 1022105
科研通“疑难数据库(出版商)”最低求助积分说明 914540