已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GAADE: identification spatially variable genes based on adaptive graph attention network

计算机科学 图形 空间分析 鉴定(生物学) 人工智能 模式识别(心理学) 计算生物学 生物 数学 理论计算机科学 植物 统计
作者
Tianjiao Zhang,Hao Sun,Zhenao Wu,Zhongqian Zhao,Xingjie Zhao,Hongfei Zhang,Bo Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1)
标识
DOI:10.1093/bib/bbae669
摘要

Abstract The rapid advancement of spatial transcriptomics (ST) sequencing technology has made it possible to capture gene expression with spatial coordinate information at the cellular level. Although many methods in ST data analysis can detect spatially variable genes (SVGs), these methods often fail to identify genes with explicit spatial expression patterns due to the lack of consideration for spatial domains. Considering spatial domains is crucial for identifying SVGs as it focuses the analysis of gene expression changes on biologically relevant regions, aiding in the more accurate identification of SVGs associated with specific cell types. Existing methods for identifying SVGs based on spatial domains predefine spot similarity before training, which prevents adaptive learning and limits generalizability across different tissues or samples. This limitation may also lead to inaccurate identification of specific genes at boundary regions. To address these issues, we present GAADE, an unsupervised neural network architecture based on graph-structured data representation learning. GAADE stacks encoder/decoder layers and integrates a self-attention mechanism to reconstruct node attributes and graph structure, effectively capturing spatial domain structures of different sections. Consequently, we confine the identification of SVGs within spatial domains. By performing differential expression analysis on spots within the target spatial domain and their multi-order neighbors, GAADE detects genes with enriched expression patterns within defined domains. Comparative evaluations with five other popular methods on ST datasets across four different species, regions and tissues demonstrate that GAADE exhibits superior performance in detecting SVGs and capturing the extent of spatial gene expression variation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏秋发布了新的文献求助10
1秒前
沐晴完成签到,获得积分10
5秒前
kingjames完成签到,获得积分10
6秒前
WWW发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
大善人完成签到,获得积分10
9秒前
领导范儿应助东山道友采纳,获得10
10秒前
Galaxy8发布了新的文献求助30
11秒前
可乐不加冰完成签到 ,获得积分10
11秒前
爆米花应助羊羊采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
Yini应助科研通管家采纳,获得20
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
小枫不学医完成签到 ,获得积分10
14秒前
深情安青应助不太懂采纳,获得10
15秒前
iNk应助LTY采纳,获得20
15秒前
16秒前
17秒前
17秒前
17秒前
lulu完成签到 ,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
不太懂完成签到,获得积分20
23秒前
SciGPT应助浪子采纳,获得10
23秒前
24秒前
24秒前
执着的冬瓜完成签到 ,获得积分10
25秒前
大金鱼完成签到 ,获得积分10
25秒前
不太懂发布了新的文献求助10
25秒前
廖梦琪完成签到 ,获得积分10
26秒前
小乌龟发布了新的文献求助10
27秒前
iNk应助HIMINNN采纳,获得20
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268863
求助须知:如何正确求助?哪些是违规求助? 3799750
关于积分的说明 11909842
捐赠科研通 3446823
什么是DOI,文献DOI怎么找? 1890798
邀请新用户注册赠送积分活动 941533
科研通“疑难数据库(出版商)”最低求助积分说明 845699