GAADE: identification spatially variable genes based on adaptive graph attention network

计算机科学 图形 空间分析 鉴定(生物学) 人工智能 模式识别(心理学) 计算生物学 生物 数学 理论计算机科学 植物 统计
作者
Tianjiao Zhang,Hao Sun,Zhenao Wu,Zhongqian Zhao,Xingjie Zhao,Hongfei Zhang,Bo Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1) 被引量:2
标识
DOI:10.1093/bib/bbae669
摘要

Abstract The rapid advancement of spatial transcriptomics (ST) sequencing technology has made it possible to capture gene expression with spatial coordinate information at the cellular level. Although many methods in ST data analysis can detect spatially variable genes (SVGs), these methods often fail to identify genes with explicit spatial expression patterns due to the lack of consideration for spatial domains. Considering spatial domains is crucial for identifying SVGs as it focuses the analysis of gene expression changes on biologically relevant regions, aiding in the more accurate identification of SVGs associated with specific cell types. Existing methods for identifying SVGs based on spatial domains predefine spot similarity before training, which prevents adaptive learning and limits generalizability across different tissues or samples. This limitation may also lead to inaccurate identification of specific genes at boundary regions. To address these issues, we present GAADE, an unsupervised neural network architecture based on graph-structured data representation learning. GAADE stacks encoder/decoder layers and integrates a self-attention mechanism to reconstruct node attributes and graph structure, effectively capturing spatial domain structures of different sections. Consequently, we confine the identification of SVGs within spatial domains. By performing differential expression analysis on spots within the target spatial domain and their multi-order neighbors, GAADE detects genes with enriched expression patterns within defined domains. Comparative evaluations with five other popular methods on ST datasets across four different species, regions and tissues demonstrate that GAADE exhibits superior performance in detecting SVGs and capturing the extent of spatial gene expression variation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxy发布了新的文献求助10
刚刚
我是老大应助tusizi2006采纳,获得10
刚刚
慕青应助Megan采纳,获得10
刚刚
刚刚
刚刚
1秒前
Qimier完成签到,获得积分10
1秒前
tutulunzi完成签到,获得积分10
2秒前
2秒前
PeakKing发布了新的文献求助10
2秒前
乐乐应助suohaiyun采纳,获得10
2秒前
A健发布了新的文献求助10
3秒前
高数数发布了新的文献求助10
3秒前
李爱国应助Lyd采纳,获得10
3秒前
wrimer完成签到,获得积分10
3秒前
4秒前
隐形曼青应助Run采纳,获得10
4秒前
4秒前
5秒前
5秒前
一二三完成签到,获得积分10
5秒前
SCI发发发发布了新的文献求助10
5秒前
5秒前
馒头发布了新的文献求助10
6秒前
mark发布了新的文献求助10
6秒前
晨晨发布了新的文献求助10
6秒前
天天应助橘子采纳,获得10
6秒前
zhangzhangzhang完成签到,获得积分10
6秒前
英勇文涛应助Qimier采纳,获得10
7秒前
yiyi完成签到,获得积分10
7秒前
可以2完成签到,获得积分10
7秒前
微光熠发布了新的文献求助10
8秒前
北天极关注了科研通微信公众号
8秒前
吃点红糖馒头完成签到,获得积分10
8秒前
8秒前
Keimo完成签到,获得积分10
9秒前
NanXin发布了新的文献求助10
9秒前
10秒前
萧雨墨完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003