Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism

计算机科学 空间分析 推论 空间语境意识 人工智能 图形 编码器 模式识别(心理学) 背景(考古学) 理论计算机科学 数学 统计 操作系统 古生物学 生物
作者
Bo Wang,Jiawei Luo,Ying Liu,Wanwan Shi,Zehao Xiong,Cong Shen,Yahui Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad262
摘要

Recent advances in spatial transcriptomics technologies have enabled gene expression profiles while preserving spatial context. Accurately identifying spatial domains is crucial for downstream analysis and it requires the effective integration of gene expression profiles and spatial information. While increasingly computational methods have been developed for spatial domain detection, most of them cannot adaptively learn the complex relationship between gene expression and spatial information, leading to sub-optimal performance.To overcome these challenges, we propose a novel deep learning method named Spatial-MGCN for identifying spatial domains, which is a Multi-view Graph Convolutional Network (GCN) with attention mechanism. We first construct two neighbor graphs using gene expression profiles and spatial information, respectively. Then, a multi-view GCN encoder is designed to extract unique embeddings from both the feature and spatial graphs, as well as their shared embeddings by combining both graphs. Finally, a zero-inflated negative binomial decoder is used to reconstruct the original expression matrix by capturing the global probability distribution of gene expression profiles. Moreover, Spatial-MGCN incorporates a spatial regularization constraint into the features learning to preserve spatial neighbor information in an end-to-end manner. The experimental results show that Spatial-MGCN outperforms state-of-the-art methods consistently in several tasks, including spatial clustering and trajectory inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南楼青主发布了新的文献求助10
1秒前
whilers发布了新的文献求助10
1秒前
2秒前
在水一方应助嘿嘿哈嘿88采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助liu采纳,获得10
6秒前
7秒前
汉堡包应助森距离采纳,获得10
11秒前
冷静芹菜完成签到 ,获得积分10
12秒前
Survivor发布了新的文献求助10
14秒前
miketyson完成签到,获得积分10
14秒前
15秒前
17秒前
桐桐应助ouwenwen采纳,获得10
18秒前
Survivor完成签到,获得积分10
18秒前
xiami应助刘先生采纳,获得10
19秒前
HEAUBOOK应助无敌小汐采纳,获得10
19秒前
whilers完成签到,获得积分10
19秒前
阳光完成签到 ,获得积分10
19秒前
文安发布了新的文献求助10
20秒前
已过完成签到,获得积分10
20秒前
绚濑绘里家的东条希关注了科研通微信公众号
20秒前
雪花君完成签到,获得积分10
20秒前
21秒前
21秒前
乐观的忆枫完成签到,获得积分10
23秒前
24秒前
26秒前
皇甫藏鸟发布了新的文献求助10
26秒前
Lucas应助开心采纳,获得10
26秒前
27秒前
建丰完成签到,获得积分10
29秒前
万能图书馆应助Miya_han采纳,获得10
29秒前
29秒前
30秒前
30秒前
内向宛凝发布了新的文献求助10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742