GL-Net: Semantic segmentation for point clouds of shield tunnel via global feature learning and local feature discriminative aggregation

判别式 特征(语言学) 点云 分割 护盾 人工智能 计算机科学 特征学习 块(置换群论) 地质学 数学 几何学 岩石学 语言学 哲学
作者
Jincheng Li,Zhenxin Zhang,Haili Sun,Si Xie,Jianjun Zou,Changqi Ji,Yue Lu,Xiaoxu Ren,Wang Liu-zhao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 335-349 被引量:19
标识
DOI:10.1016/j.isprsjprs.2023.04.011
摘要

has gradually become the first choice of modern urban public transportation due to its advantages of safety and high-efficiency. Shield tunnel is an important type of subway tunnel, and its structural stability and safety play an important role in subway operation. The shield tunnels are prone to problems such as water leakage and tunnel collapse, which affect the safe operation of subways. Efficient monitoring methods are required to detect the status of subway tunnels. The data collection and accurate segmentation of key components of shield tunnels are the basis and key to the automatic monitoring of subway tunnels. This research presents a novel semantic segmentation method of three-dimensional (3-D) point clouds of typical structural elements (e.g., longitudinal joint, circumferential joints, bolt hole and grouting hole) in shield tunnel based on deep learning. In this method, we focus on how to make the network learn robust global features and complex local distribution patterns. Further, we propose a global and local feature encoding block (namely GL-block) to discriminatively aggregate local features while learning global representation. After multiple encodings by the GL-block, we design a global correlation modeling (GCM) module to establish a global awareness of each point. Finally, a weighted cross-entropy loss function is designed to solve the problem of unbalanced number of samples in each category of shield tunnel. In the experiments, we make a dataset of shield tunnel point clouds with a length of about 1,000 m collected by CNU-TS-1 (DU et al., 2018) mobile tunnel monitoring system, and use the dataset to train and test the segmentation ability of our method on the typical structural elements of shield tunnels. Experiments verify the effectiveness of our method by comparing with the other state-of-the-art 3-D point cloud semantic segmentation methods, and our method has an mIoU score of 73.02 %, which is at least 14.54 % higher than the other compared state-of-the-art networks. Also, we further verify the adaptability of our method to different tunnels and different laser scanning equipment, such as FARO, Leica and Z + F, and achieve very advanced performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vimeid完成签到,获得积分10
2秒前
Reginannnn完成签到,获得积分10
2秒前
张超发布了新的文献求助10
2秒前
M22发布了新的文献求助10
3秒前
3秒前
hahamissyu完成签到,获得积分10
3秒前
科研通AI5应助XiePeiting采纳,获得10
3秒前
赘婿应助张超采纳,获得10
6秒前
我是老大应助机灵的听荷采纳,获得10
6秒前
大马哥完成签到 ,获得积分10
6秒前
FashionBoy应助机灵的听荷采纳,获得10
6秒前
科研通AI2S应助机灵的听荷采纳,获得10
7秒前
星辰大海应助机灵的听荷采纳,获得10
7秒前
orixero应助机灵的听荷采纳,获得10
7秒前
烟花应助机灵的听荷采纳,获得10
7秒前
传奇3应助机灵的听荷采纳,获得10
7秒前
M旭旭完成签到,获得积分10
8秒前
8秒前
8秒前
赘婿应助jianghe采纳,获得10
9秒前
魔幻沛菡完成签到 ,获得积分10
9秒前
10秒前
雪白发卡完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
zhengzengpeng发布了新的文献求助10
15秒前
久晴完成签到,获得积分10
15秒前
科研通AI5应助wstc采纳,获得10
16秒前
背后的果汁完成签到,获得积分10
16秒前
Dr.He发布了新的文献求助10
17秒前
九鹤发布了新的文献求助10
17秒前
格局打开发布了新的文献求助10
17秒前
风中的小丸子完成签到,获得积分10
17秒前
无私文博发布了新的文献求助10
17秒前
19秒前
Siriluck完成签到 ,获得积分10
19秒前
传奇3应助认真的绮南采纳,获得10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Ergodic Theory 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836785
求助须知:如何正确求助?哪些是违规求助? 3379022
关于积分的说明 10507257
捐赠科研通 3098893
什么是DOI,文献DOI怎么找? 1706622
邀请新用户注册赠送积分活动 821120
科研通“疑难数据库(出版商)”最低求助积分说明 772445