Deciphering associations between gut microbiota and clinical factors using microbial modules

肠道菌群 生物 失调 疾病 分类单元 相对物种丰度 丰度(生态学) 微生物群 计算生物学 生态学 免疫学 生物信息学 医学 病理
作者
Ran Wang,Xubin Zheng,Fangda Song,Man Hon Wong,Kwong Sak Leung,Lixin Cheng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (5) 被引量:1
标识
DOI:10.1093/bioinformatics/btad213
摘要

Abstract Motivation Human gut microbiota plays a vital role in maintaining body health. The dysbiosis of gut microbiota is associated with a variety of diseases. It is critical to uncover the associations between gut microbiota and disease states as well as other intrinsic or environmental factors. However, inferring alterations of individual microbial taxa based on relative abundance data likely leads to false associations and conflicting discoveries in different studies. Moreover, the effects of underlying factors and microbe–microbe interactions could lead to the alteration of larger sets of taxa. It might be more robust to investigate gut microbiota using groups of related taxa instead of the composition of individual taxa. Results We proposed a novel method to identify underlying microbial modules, i.e. groups of taxa with similar abundance patterns affected by a common latent factor, from longitudinal gut microbiota and applied it to inflammatory bowel disease (IBD). The identified modules demonstrated closer intragroup relationships, indicating potential microbe–microbe interactions and influences of underlying factors. Associations between the modules and several clinical factors were investigated, especially disease states. The IBD-associated modules performed better in stratifying the subjects compared with the relative abundance of individual taxa. The modules were further validated in external cohorts, demonstrating the efficacy of the proposed method in identifying general and robust microbial modules. The study reveals the benefit of considering the ecological effects in gut microbiota analysis and the great promise of linking clinical factors with underlying microbial modules. Availability and implementation https://github.com/rwang-z/microbial_module.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
勤恳的苑博完成签到,获得积分10
1秒前
王sir完成签到,获得积分10
2秒前
wanglei完成签到,获得积分10
2秒前
科研通AI5应助llz采纳,获得10
3秒前
Owen应助reneeyan58采纳,获得30
3秒前
仲夏发布了新的文献求助10
3秒前
salfige发布了新的文献求助10
4秒前
4秒前
田田田田完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
神勇振家完成签到,获得积分20
5秒前
5秒前
悦24完成签到,获得积分10
6秒前
脑洞疼应助KingYugene采纳,获得10
7秒前
明明明完成签到,获得积分10
7秒前
8秒前
滴滴嘟完成签到,获得积分10
8秒前
Anita发布了新的文献求助10
8秒前
炸炸鱼发布了新的文献求助10
8秒前
百草之恋cpu完成签到 ,获得积分10
9秒前
ding应助鱼维尼采纳,获得10
10秒前
张朝欣完成签到,获得积分10
10秒前
NexusExplorer应助小胡采纳,获得10
11秒前
11秒前
酷酷的半凡完成签到,获得积分10
11秒前
12秒前
13秒前
smile完成签到,获得积分10
14秒前
沙漠大雕完成签到,获得积分10
14秒前
浮游应助xuhandi采纳,获得10
14秒前
Anita完成签到,获得积分10
15秒前
15秒前
曲光彩完成签到,获得积分10
15秒前
李李李发布了新的文献求助10
16秒前
annis完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Nuclear Fuel Behaviour under RIA Conditions 500
Life: The Science of Biology Digital Update 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4685822
求助须知:如何正确求助?哪些是违规求助? 4059960
关于积分的说明 12552324
捐赠科研通 3756518
什么是DOI,文献DOI怎么找? 2074678
邀请新用户注册赠送积分活动 1103592
科研通“疑难数据库(出版商)”最低求助积分说明 982719