A Review of Robust Machine Scheduling

计算机科学 调度(生产过程) 稳健性(进化) 机器学习 人工智能 稳健优化 作业车间调度 数学优化 数学 生物化学 地铁列车时刻表 基因 操作系统 化学
作者
Ningwei Zhang,Yuli Zhang,Shiji Song,C. L. Philip Chen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1323-1334 被引量:14
标识
DOI:10.1109/tase.2023.3246223
摘要

Robust optimization (RO) has been recognized as an effective means to deal with unanticipated events in highly uncertain and risky environments. This paper systematically reviews two types of emerging RO machine scheduling approaches—robust machine scheduling (R-MS) and distributionally R-MS (DR-MS) methods—which usually offer tractable formulations and analytical results for machine scheduling problems under uncertainty. First, after highlighting the advantages of RO methods over the stochastic approach in terms of tractability and robustness, we use the bibliometric method to analyze the literature related to R-MS/DR-MS problems and classify them from the following aspects: (1) uncertain factors, (2) uncertainty descriptions, (3) robustness criteria, (4) machine environments and (5) solution methods. Second, we discuss the uncertainty descriptions, and the robust feasibility and robust optimality criteria. We further provide a state-of-the-art review of R-MS/DR-MS models in different machine environments and discuss the performance of the R-MS/DR-MS models. Third, we review and discuss the existing exact, approximation, online, and heuristic solution methods for solving R-MS/DR-MS models. Finally, we present future research opportunities in two promising areas: green machine scheduling problems and machine learning-enabled algorithms. Note to Practitioners —Machine scheduling plays an essential role in industrial and service systems, such as manufacturing, power generation, transportation and medical systems. However, in practice, scheduling systems usually operate in highly uncertain environments due to noisy measurements, prediction errors, and implementation deviations. To ensure robust feasibility and robust optimality, robust machine scheduling (R-MS) and distributionally R-MS (DR-MS) approaches have been recently proposed to hedge against the uncertainties related to processing time, release time, due date, machine breakdown, etc. This paper provides a comprehensive review of the R-MS/DR-MS models and algorithms in different machine environments from the aspects of uncertainty descriptions, robustness criteria and solution methods. This paper further highlights the challenges of R-MS problems and provides promising and valuable research opportunities in terms of problem formulations and algorithm designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song完成签到,获得积分20
刚刚
玻尿酸发布了新的文献求助20
刚刚
苹果蜗牛发布了新的文献求助10
1秒前
xiaoxue发布了新的文献求助10
1秒前
yangts2021发布了新的文献求助10
2秒前
klio发布了新的文献求助10
2秒前
科目三应助西厢张生采纳,获得10
2秒前
FILPPED完成签到 ,获得积分10
4秒前
RoyChen发布了新的文献求助10
4秒前
4秒前
5秒前
xw发布了新的文献求助10
5秒前
一个骗子完成签到,获得积分10
5秒前
赵丫丫完成签到,获得积分10
5秒前
5秒前
AIT发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
赘婿应助科研通管家采纳,获得30
6秒前
打打应助科研通管家采纳,获得50
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
yznfly应助科研通管家采纳,获得20
7秒前
科目三应助BSDL采纳,获得10
7秒前
7秒前
Frank应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得20
8秒前
icaohao发布了新的文献求助10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
tcf应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451285
求助须知:如何正确求助?哪些是违规求助? 4559138
关于积分的说明 14271615
捐赠科研通 4482981
什么是DOI,文献DOI怎么找? 2455321
邀请新用户注册赠送积分活动 1446120
关于科研通互助平台的介绍 1422181