Deep Learning-Based Classification of Subtypes of Primary Angle-Closure Disease With Anterior Segment Optical Coherence Tomography

光学相干层析成像 人工智能 青光眼 分类器(UML) 医学 开角型青光眼 眼科 试验装置 训练集 计算机科学 模式识别(心理学) 验光服务
作者
Yadollah Eslami,Zahra Mousavi Kouzahkanan,Zahra Farzinvash,Mona Safizadeh,Reza Zarei,Ghasem Fakhraie,Zakieh Vahedian,Tahereh Mahmoudi,Kaveh Fadakar,Alireza Beikmarzehei,Seyed Mehdi Tabatabaei
出处
期刊:Journal of Glaucoma [Lippincott Williams & Wilkins]
卷期号:32 (6): 540-547 被引量:5
标识
DOI:10.1097/ijg.0000000000002194
摘要

We developed a deep learning-based classifier that can discriminate primary angle closure suspects (PACS), primary angle closure (PAC)/primary angle closure glaucoma (PACG), and also control eyes with open angle with acceptable accuracy.To develop a deep learning-based classifier for differentiating subtypes of primary angle closure disease, including PACS and PAC/PACG, and also normal control eyes.Anterior segment optical coherence tomography images were used for analysis with 5 different networks including MnasNet, MobileNet, ResNet18, ResNet50, and EfficientNet. The data set was split with randomization performed at the patient level into a training plus validation set (85%), and a test data set (15%). Then 4-fold cross-validation was used to train the model. In each mentioned architecture, the networks were trained with original and cropped images. Also, the analyses were carried out for single images and images grouped on the patient level (case-based). Then majority voting was applied to the determination of the final prediction.A total of 1616 images of normal eyes (87 eyes), 1055 images of PACS (66 eyes), and 1076 images of PAC/PACG (66 eyes) eyes were included in the analysis. The mean ± SD age was 51.76 ± 15.15 years and 48.3% were males. MobileNet had the best performance in the model, in which both original and cropped images were used. The accuracy of MobileNet for detecting normal, PACS, and PAC/PACG eyes was 0.99 ± 0.00, 0.77 ± 0.02, and 0.77 ± 0.03, respectively. By running MobileNet in a case-based classification approach, the accuracy improved and reached 0.95 ± 0.03, 0.83 ± 0.06, and 0.81 ± 0.05, respectively. For detecting the open angle, PACS, and PAC/PACG, the MobileNet classifier achieved an area under the curve of 1, 0.906, and 0.872, respectively, on the test data set.The MobileNet-based classifier can detect normal, PACS, and PAC/PACG eyes with acceptable accuracy based on anterior segment optical coherence tomography images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
皛宁关注了科研通微信公众号
1秒前
1秒前
纯真的柔发布了新的文献求助10
2秒前
滚滚发布了新的文献求助10
4秒前
luffy0509发布了新的文献求助10
5秒前
文献荒完成签到,获得积分10
5秒前
hzhang完成签到,获得积分10
5秒前
2520完成签到 ,获得积分10
6秒前
han发布了新的文献求助10
6秒前
SYLH应助糖糖糖采纳,获得10
7秒前
端庄白梦完成签到,获得积分20
8秒前
动听的谷秋完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助oohey采纳,获得10
9秒前
9秒前
虚心谷梦完成签到,获得积分10
9秒前
10秒前
笑点低菲鹰完成签到,获得积分10
10秒前
大个应助滚滚采纳,获得10
11秒前
11秒前
佟莫言发布了新的文献求助10
12秒前
生物狗发布了新的文献求助10
13秒前
科研通AI5应助随安采纳,获得30
13秒前
13秒前
Nireus完成签到,获得积分10
13秒前
luffy0509完成签到,获得积分10
14秒前
Chao发布了新的文献求助10
14秒前
16秒前
17秒前
生物狗完成签到,获得积分10
18秒前
18秒前
研友_VZG7GZ应助黄黄采纳,获得10
18秒前
瓜了个瓜发布了新的文献求助10
20秒前
20秒前
崩溃的小牛马完成签到,获得积分10
21秒前
21秒前
由天与完成签到,获得积分10
21秒前
22秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924