Prediction of red blood cell transfusion after orthopedic surgery using an interpretable machine learning framework

医学 骨科手术 围手术期 回顾性队列研究 输血 血液管理 外科 机器学习 计算机科学
作者
Yifeng Chen,Xiaoyu Cai,Zicheng Cao,Jie Lin,Wen‐Yu Huang,Yuan Zhuang,Lehan Xiao,Xiao-Zhen Guan,Ying Wang,Xingqiu Xia,Jiao Feng,Xiangjun Du,Guozhi Jiang,Deqing Wang
出处
期刊:Frontiers in Surgery [Frontiers Media SA]
卷期号:10: 1047558-1047558 被引量:8
标识
DOI:10.3389/fsurg.2023.1047558
摘要

Objective Postoperative red blood cell (RBC) transfusion is widely used during the perioperative period but is often associated with a high risk of infection and complications. However, prediction models for RBC transfusion in patients with orthopedic surgery have not yet been developed. We aimed to identify predictors and constructed prediction models for RBC transfusion after orthopedic surgery using interpretable machine learning algorithms. Methods This retrospective cohort study reviewed a total of 59,605 patients undergoing orthopedic surgery from June 2013 to January 2019 across 7 tertiary hospitals in China. Patients were randomly split into training (80%) and test subsets (20%). The feature selection method of recursive feature elimination (RFE) was used to identify an optimal feature subset from thirty preoperative variables, and six machine learning algorithms were applied to develop prediction models. The Shapley Additive exPlanations (SHAP) value was employed to evaluate the contribution of each predictor towards the prediction of postoperative RBC transfusion. For simplicity of the clinical utility, a risk score system was further established using the top risk factors identified by machine learning models. Results Of the 59,605 patients with orthopedic surgery, 19,921 (33.40%) underwent postoperative RBC transfusion. The CatBoost model exhibited an AUC of 0.831 (95% CI: 0.824–0.836) on the test subset, which significantly outperformed five other prediction models. The risk of RBC transfusion was associated with old age (>60 years) and low RBC count (<4.0 × 10 12 /L) with clear threshold effects. Extremes of BMI, low albumin, prolonged activated partial thromboplastin time, repair and plastic operations on joint structures were additional top predictors for RBC transfusion. The risk score system derived from six risk factors performed well with an AUC of 0.801 (95% CI: 0.794–0.807) on the test subset. Conclusion By applying an interpretable machine learning framework in a large-scale multicenter retrospective cohort, we identified novel modifiable risk factors and developed prediction models with good performance for postoperative RBC transfusion in patients undergoing orthopedic surgery. Our findings may allow more precise identification of high-risk patients for optimal control of risk factors and achieve personalized RBC transfusion for orthopedic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平凡的书雁完成签到,获得积分10
刚刚
Kersic发布了新的文献求助10
刚刚
李健应助lejunia采纳,获得30
刚刚
刚刚
852应助yuan采纳,获得10
1秒前
1秒前
星辰大海应助1111111采纳,获得10
2秒前
erjigao完成签到,获得积分10
3秒前
3秒前
4秒前
温婉的花生完成签到 ,获得积分10
4秒前
领导范儿应助ArkZ采纳,获得30
5秒前
5秒前
5秒前
Erling完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
6秒前
Owen应助Ldx采纳,获得10
6秒前
taoze发布了新的文献求助10
6秒前
qwq发布了新的文献求助10
7秒前
7秒前
strawberry完成签到,获得积分10
8秒前
愉快若剑完成签到,获得积分10
8秒前
李爱国应助大意的世倌采纳,获得10
8秒前
sam发布了新的文献求助30
9秒前
天天快乐应助Inanopig采纳,获得10
9秒前
香蕉觅云应助未知数采纳,获得10
9秒前
9秒前
9秒前
Lxxxx发布了新的文献求助10
10秒前
11秒前
在水一方应助郑春梅采纳,获得10
12秒前
Ava应助qwq采纳,获得10
12秒前
Akim应助不是小苦瓜采纳,获得10
12秒前
豆本豆发布了新的文献求助10
13秒前
13秒前
zhang发布了新的文献求助10
13秒前
13秒前
刘丰铭完成签到,获得积分10
14秒前
浮游应助林子采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321446
求助须知:如何正确求助?哪些是违规求助? 4463163
关于积分的说明 13889191
捐赠科研通 4354367
什么是DOI,文献DOI怎么找? 2391707
邀请新用户注册赠送积分活动 1385278
关于科研通互助平台的介绍 1355062