Fine-Tuning Graph Neural Networks via Active Learning: Unlocking the Potential of Graph Neural Networks Trained on Nonaqueous Systems for Aqueous CO2 Reduction

计算机科学 人工神经网络 图形 人工智能 机器学习 水溶液 化学 理论计算机科学 物理化学
作者
Zihao Jiao,Yu Mao,Ruihu Lu,Ya Liu,Liejin Guo,Ziyun Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.5c00089
摘要

Graph neural networks (GNNs) have revolutionized catalysis research with their efficiency and accuracy in modeling complex chemical interactions. However, adapting GNNs trained on nonaqueous data sets to aqueous systems poses notable challenges due to intricate water interactions. In this study, we proposed an active learning-based fine-tuning approach to extend the applicability of GNNs to aqueous environments. The geometry optimization and transition state search workflows are designed to reduce computational costs while maintaining DFT-level accuracy. Applied to the CO2 reduction reaction, the workflow delivers a 2-3-fold acceleration in geometry optimization through a relaxed force threshold combined with DFT refinement. The versatility of the transition state search algorithm was demonstrated on key C-C coupling pathways, pinpointing *CO-*COH as the most energetically favorable pathway in aqueous systems of Cu and Cu-based Ag, Au, and Zn alloys. The Brønsted-Evans-Polanyi relationship remains robust under water-induced fluctuations, with alloyed metals such as Al, Ga, and Pd, along with Ag, Au, and Zn, exhibiting coupling efficiency comparable to that of Cu. Additionally, perturbation-based training on forces and energies extends the application of GNNs to aqueous ab initio molecular dynamics simulations, enabling efficient modeling of dynamical trajectories. This work presents novel approaches to adapting nonaqueous models for application in aqueous systems, highlighting GNNs' potential in solvated environments and laying a foundation for accelerating predictions of catalytic mechanisms under realistic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助kmessiy采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
追寻老九应助狂野白梅采纳,获得10
1秒前
1秒前
hehe发布了新的文献求助10
1秒前
wali完成签到 ,获得积分10
3秒前
fcm应助梦会故乡采纳,获得50
3秒前
顺心的皮卡丘完成签到 ,获得积分10
4秒前
蓝色刀锋发布了新的文献求助10
4秒前
友好小土豆完成签到 ,获得积分10
4秒前
潘fujun发布了新的文献求助10
5秒前
顾矜应助sunnnn采纳,获得10
5秒前
6秒前
完美世界应助北方采纳,获得10
6秒前
8秒前
hehe完成签到,获得积分10
8秒前
9秒前
10秒前
搞搞科研完成签到,获得积分10
11秒前
小蘑菇应助hehe采纳,获得10
11秒前
wocala完成签到,获得积分10
11秒前
t通发布了新的文献求助10
12秒前
12秒前
无花果应助Rainay采纳,获得10
14秒前
chentzbio完成签到,获得积分10
14秒前
elmacho完成签到 ,获得积分10
15秒前
17秒前
18秒前
神勇秋白发布了新的文献求助50
20秒前
21秒前
杨璨禹发布了新的文献求助10
22秒前
orixero应助月月采纳,获得10
22秒前
张烤明完成签到,获得积分10
22秒前
孤独静枫发布了新的文献求助10
23秒前
23秒前
JamesPei应助Ning采纳,获得10
23秒前
24秒前
gyh发布了新的文献求助100
24秒前
呵呵发布了新的文献求助10
25秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3880096
求助须知:如何正确求助?哪些是违规求助? 3422317
关于积分的说明 10728949
捐赠科研通 3147083
什么是DOI,文献DOI怎么找? 1736314
邀请新用户注册赠送积分活动 838329
科研通“疑难数据库(出版商)”最低求助积分说明 783752