A rolling bearing fault diagnosis method based on feature fusion threshold attention residual network and enhanced transformer under small samples and strong noise

残余物 变压器 方位(导航) 融合 模式识别(心理学) 材料科学 噪音(视频) 计算机科学 断层(地质) 人工智能 算法 电气工程 工程类 地质学 地震学 电压 语言学 哲学 图像(数学)
作者
Xiaoqiang Zhao,G. P. An
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add316
摘要

Abstract As an important component of rotating machinery, rolling bearing often operates under strong noise environments, which may cause the system to fail to work normally once a fault occurs; in addition, there is the problem of limited labeled samples of fault data during bearing operation. Therefore, to address the problem of poor fault diagnosis accuracy of rolling bearings under strong noise environments and small sample conditions, this paper proposes a Multi-Sensor Feature Fusion Threshold Attention Residual Network and Convolutional Enhancement Transformer (MFFTARN-CET) method. First, a Gaussian Smoothed Second Order Synchronized Wavelet Transform (GS-SSWT) method is proposed, which converts the acoustic and vibration signals into two-dimensional time-frequency maps to retain the time-frequency information. Then, a multi-channel feature fusion block is designed, which fully exploits the similarity relationship of multi-sensor data with different sizes of convolutional layers. Meanwhile, the representational capability of the network is improved by learning the correlation and importance between different channels through a Squeeze-and-Excitation Network (SE) mechanism. Second, the fused features are input into MFFTARN-CET for training, and the outputs are fused based on feature weighting to ensure the full utilization of multi-sensor signals. Third, a Hybrid Adaptive Loss (HAL) is designed to allow the method to adaptively adjust the contribution of different loss components during the training process through a gradient magnitude dynamic weight adjustment strategy. Finally, the effectiveness and superiority of the MFFTARN-CET method are verified using two rolling bearing datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
椰子完成签到,获得积分10
1秒前
小李子发布了新的文献求助10
2秒前
2秒前
扶溪筠完成签到,获得积分10
2秒前
。。完成签到,获得积分20
2秒前
ding应助科研通管家采纳,获得10
2秒前
风中寄灵完成签到,获得积分10
3秒前
欣喜念梦完成签到,获得积分10
3秒前
li发布了新的文献求助10
4秒前
4秒前
咿呀发布了新的文献求助10
4秒前
4秒前
YK发布了新的文献求助10
4秒前
muliushang完成签到 ,获得积分10
5秒前
不懈奋进应助zzx采纳,获得30
5秒前
大个应助慈祥的元绿采纳,获得10
6秒前
7秒前
wuhzh发布了新的文献求助10
7秒前
8秒前
爆米花应助倾语采纳,获得10
8秒前
8秒前
刘涛啦啦啦完成签到,获得积分10
9秒前
9秒前
zzb完成签到,获得积分10
10秒前
健壮的月光完成签到,获得积分10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
研友_851KE8完成签到,获得积分10
10秒前
10秒前
d22110652发布了新的文献求助30
10秒前
小宝爸爸发布了新的文献求助10
12秒前
12秒前
13秒前
NexusExplorer应助张一涛采纳,获得10
13秒前
半柚应助zzzwhy采纳,获得10
14秒前
14秒前
叽叽喳喳发布了新的文献求助10
14秒前
SYLH应助听闻采纳,获得10
15秒前
freesia完成签到,获得积分10
15秒前
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472