Addressing the interface issues of all‐solid‐state lithium batteries by ultra‐thin composite solid‐state electrolyte combined with the integrated preparation technology

锂(药物) 固态 电解质 复合数 材料科学 接口(物质) 薄膜 纳米技术 化学工程 工程物理 复合材料 化学 工程类 电极 心理学 物理化学 毛细管数 精神科 毛细管作用
作者
Xiaoxue Zhao,Chao Wang,Xiaomeng Fan,Yang Li,Dabing Li,Yanling Zhang,Li‐Zhen Fan
出处
期刊:InfoMat [Wiley]
标识
DOI:10.1002/inf2.70012
摘要

Abstract The interfacial engineering in solid‐state lithium batteries (SSLBs) is attracting escalating attention due to the profoundly enhanced safety, energy density, and charging capabilities of future power storage technologies. Nonetheless, polymer/ceramic interphase compatibility, serious agglomeration of ceramic particles, and discontinuous ionic conduction at the electrode/electrolyte interface seriously limit Li + transport in SSLBs and block the application and large‐scale manufacturing. Hence, garnet Li 7 La 3 Zr 2 O 12 (LLZO) nanoparticles are introduced into the polyacrylonitrile (PAN) nanofiber to fabricate a polymer‐ceramic nanofiber‐enhanced ultrathin SSE membrane (3D LLZO‐PAN), harnessing nanofiber confinement to aggregate LLZO nanoparticles to build the continuous conduction pathway of Li + . In addition, a novel integrated electrospinning process is deliberately designed to construct tight physical contact between positive electrode/electrolyte interphases. Importantly, the synergistic effect of the PAN, polyethylene oxide (PEO), and lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) benefits a stable solid electrolyte interphase (SEI) layer, resulting in superior cycling performance, achieving a remarkable 1500 h cycling at 0.2 mA cm −2 in the Li|3D LLZO‐PAN|Li battery. Consequently, the integrated polymer‐ceramic nanofiber‐enhanced SSEs simultaneously achieve the balance in ultrathin thickness (16 μm), fast ion transport (2.9 × 10 −4 S cm −1 ), and superior excellent interface contact (15.6 Ω). The LiNi 0.8 Co 0.1 Mn 0.1 O 2 |3D LLZO‐PAN|Li batteries (2.7–4.3 V) can work over 200 cycles at 0.5 C. The pouch cells with practical LiNi 0.8 Co 0.1 Mn 0.1 O 2 ||Li configuration achieve an ultrahigh energy density of 345.8 Wh kg −1 and safety performance. This work provides new strategies for the manufacturing and utilization of high‐energy‐density SSLBs. image
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不倦应助科研通管家采纳,获得30
3秒前
cdercder应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
明眸完成签到,获得积分10
4秒前
KYT完成签到,获得积分10
10秒前
小二郎应助一一一采纳,获得10
12秒前
iwhsgfes完成签到,获得积分10
14秒前
Hale完成签到,获得积分0
17秒前
不知完成签到 ,获得积分10
18秒前
18秒前
20秒前
JIMMY发布了新的文献求助10
22秒前
ylky完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
26秒前
26秒前
26秒前
27秒前
27秒前
xxxxxxxxx完成签到 ,获得积分10
27秒前
28秒前
LLL完成签到,获得积分10
28秒前
29秒前
有热心愿意完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
脑洞疼应助charon采纳,获得10
34秒前
qqq完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779613
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221318
捐赠科研通 3040220
什么是DOI,文献DOI怎么找? 1668678
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535