亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COVID-19CT+: A public dataset of CT images for COVID-19 retrospective analysis

人工智能 2019年冠状病毒病(COVID-19) 深度学习 机器学习 肺炎 计算机科学 试验装置 集合(抽象数据类型) 数据集 模式识别(心理学) 医学 疾病 病理 传染病(医学专业) 内科学 程序设计语言
作者
Yihao Sun,Tianming Du,Bin Wang,Md Mamunur Rahaman,Xinghao Wang,Xinyu Huang,Tao Jiang,Marcin Grzegorzek,Hongzan Sun,Jian Xu,Chen Li
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:33 (5): 901-915
标识
DOI:10.1177/08953996251332793
摘要

Background and objective COVID-19 is considered as the biggest global health disaster in the 21st century, and it has a huge impact on the world. Methods This paper publishes a publicly available dataset of CT images of multiple types of pneumonia (COVID-19CT+). Specifically, the dataset contains 409,619 CT images of 1333 patients, with subset-A containing 312 community-acquired pneumonia cases and subset-B containing 1021 COVID-19 cases. In order to demonstrate that there are differences in the methods used to classify COVID-19CT+ images across time, we selected 13 classical machine learning classifiers and 5 deep learning classifiers to test the image classification task. Results In this study, two sets of experiments are conducted using traditional machine learning and deep learning methods, the first set of experiments is the classification of COVID-19 in Subset-B versus COVID-19 white lung disease, and the second set of experiments is the classification of community-acquired pneumonia in Subset-A versus COVID-19 in Subset-B, demonstrating that the different periods of the methods differed on COVID-19CT+. On the first set of experiments, the accuracy of traditional machine learning reaches a maximum of 97.3% and a minimum of only 62.6%. Deep learning algorithms reaches a maximum of 97.9% and a minimum of 85.7%. On the second set of experiments, traditional machine learning reaches a high of 94.6% accuracy and a low of 56.8%. The deep learning algorithm reaches a high of 91.9% and a low of 86.3%. Conclusions The COVID-19CT+ in this study covers a large number of CT images of patients with COVID-19 and community-acquired pneumonia and is one of the largest datasets available. We expect that this dataset will attract more researchers to participate in exploring new automated diagnostic algorithms to contribute to the improvement of the diagnostic accuracy and efficiency of COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
41秒前
41秒前
42秒前
薏米人儿发布了新的文献求助10
45秒前
小何发布了新的文献求助10
47秒前
AaronW发布了新的文献求助10
47秒前
加菲丰丰举报迷路白枫求助涉嫌违规
48秒前
52秒前
烟花应助zoey采纳,获得10
59秒前
加菲丰丰举报求助违规成功
1分钟前
xxfsx举报求助违规成功
1分钟前
哈基米德举报求助违规成功
1分钟前
1分钟前
薏米人儿完成签到,获得积分10
1分钟前
1分钟前
AX完成签到,获得积分10
1分钟前
加菲丰丰完成签到,获得积分0
1分钟前
hqw发布了新的文献求助10
1分钟前
Able完成签到,获得积分10
1分钟前
龙叶静完成签到 ,获得积分10
1分钟前
小二郎应助陳.采纳,获得10
1分钟前
hqw完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
AaronW完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
陳.发布了新的文献求助10
1分钟前
1分钟前
妩媚的海应助陳.采纳,获得10
1分钟前
2分钟前
2分钟前
zoey发布了新的文献求助10
2分钟前
橙子发布了新的文献求助10
2分钟前
Orange应助牛油果采纳,获得10
2分钟前
vkey完成签到,获得积分10
2分钟前
zoey完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515733
求助须知:如何正确求助?哪些是违规求助? 4609046
关于积分的说明 14514348
捐赠科研通 4545551
什么是DOI,文献DOI怎么找? 2490666
邀请新用户注册赠送积分活动 1472533
关于科研通互助平台的介绍 1444249