Deep learning solutions to singular ordinary differential equations: From special functions to spherical accretion

常微分方程 数学 线性多步法 增值(金融) 数学分析 微分方程 物理 应用数学 天体物理学 微分代数方程
作者
Ramiro Cayuso,Mario Herrero-Valea,Enrico Barausse
出处
期刊:Physical review [American Physical Society]
卷期号:111 (6)
标识
DOI:10.1103/physrevd.111.064082
摘要

Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semianalytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit physics informed neural networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation---the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助18°N天水色采纳,获得10
3秒前
TOF完成签到,获得积分10
5秒前
慕青应助风铃鸟采纳,获得10
6秒前
CipherSage应助jiangshanshan采纳,获得10
11秒前
16秒前
李李完成签到 ,获得积分10
16秒前
19秒前
21秒前
nonTUT完成签到,获得积分20
22秒前
22秒前
Hello应助安安采纳,获得10
23秒前
nonTUT发布了新的文献求助10
24秒前
25秒前
冰魂应助一期一会采纳,获得10
26秒前
拼搏绿柳完成签到,获得积分10
28秒前
半柚发布了新的文献求助10
28秒前
delbin发布了新的文献求助10
28秒前
Lauren完成签到 ,获得积分10
29秒前
30秒前
慕青应助小杨采纳,获得10
30秒前
文静的绯完成签到,获得积分10
30秒前
jiangshanshan发布了新的文献求助10
32秒前
搜集达人应助你hao采纳,获得10
33秒前
袁科研完成签到,获得积分10
33秒前
40秒前
42秒前
爆米花应助123321采纳,获得10
43秒前
你hao完成签到,获得积分10
43秒前
44秒前
45秒前
所所应助我喜欢大学霸采纳,获得10
45秒前
你hao发布了新的文献求助10
46秒前
雨中过客发布了新的文献求助10
48秒前
jiangshanshan完成签到,获得积分20
49秒前
qks完成签到 ,获得积分10
54秒前
在水一方应助科研通管家采纳,获得10
55秒前
55秒前
wanci应助科研通管家采纳,获得10
55秒前
传奇3应助科研通管家采纳,获得10
55秒前
我是老大应助科研通管家采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366