Large Language Model with Region-guided Referring and Grounding for CT Report Generation

计算机科学 接地 计算机断层摄影术 医学影像学 遥感 自然语言处理 人工智能 地质学 工程类 放射科 医学 电气工程
作者
Zhixuan Chen,Yequan Bie,Haibo Jin,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3559923
摘要

Computed tomography (CT) report generation is crucial to assist radiologists in interpreting CT volumes, which can be time-consuming and labor-intensive. Existing methods primarily only consider the global features of the entire volume, making it struggle to focus on specific regions and potentially missing abnormalities. To address this issue, we propose Reg2RG, the first region-guided referring and grounding framework for CT report generation, which enhances diagnostic performance by focusing on anatomical regions within the volume. Specifically, we utilize masks from a universal segmentation module to capture local features for each referring region. A local feature decoupling (LFD) strategy is proposed to preserve the local high-resolution details with little computational overhead. Then the local features are integrated with global features to capture inter-regional relationships within a cohesive context. Moreover, we propose a novel region-report alignment (RRA) training strategy. It leverages the recognition of referring regions to guide the generation of region-specific reports, enhancing the model's referring and grounding capabilities while also improving the report's interpretability. A large language model (LLM) is further employed as the language decoder to generate reports from integrated visual features, facilitating region-level comprehension. Extensive experiments on two large-scale chest CT-report datasets demonstrate the superiority of our method, which outperforms several state-of-the-art methods in terms of both natural language generation and clinical efficacy metrics while preserving promising interpretability. The code is available at https://github.com/zhi-xuan-chen/Reg2RG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanting完成签到,获得积分10
1秒前
3秒前
eui完成签到,获得积分10
4秒前
5秒前
张张发布了新的文献求助10
7秒前
深年完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
小苗发布了新的文献求助10
8秒前
星辰大海应助YGTRECE采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得100
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
zmnzmnzmn应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
zmnzmnzmn应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
zmnzmnzmn应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
大个应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
gaobo应助科研通管家采纳,获得10
12秒前
蛋卷儿应助科研通管家采纳,获得20
12秒前
zmnzmnzmn应助科研通管家采纳,获得10
12秒前
Seal完成签到,获得积分10
13秒前
13秒前
橙子完成签到,获得积分10
16秒前
zytdflw完成签到,获得积分10
17秒前
张张发布了新的文献求助10
19秒前
22秒前
24秒前
25秒前
乐乐应助踏雪飞鸿采纳,获得10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339