Application of an interpretable machine learning method to predict the risk of death during hospitalization in patients with acute myocardial infarction combined with diabetes mellitus

医学 心肌梗塞 糖尿病 内科学 心脏病学 内分泌学
作者
Zhijun Bu,Siyu Bai,Chan Yang,Guanhang Lu,Enze Lei,Youzhu Su,Zhi‐Yan Han,Man Liu,Jingge Li,Linyan Wang,Jian-Ping Liu,Yao Chen,Zhaolan Liu
出处
期刊:Acta Cardiologica [Informa]
卷期号:: 1-18 被引量:2
标识
DOI:10.1080/00015385.2025.2481662
摘要

Predicting the prognosis of patients with acute myocardial infarction (AMI) combined with diabetes mellitus (DM) is crucial due to high in-hospital mortality rates. This study aims to develop and validate a mortality risk prediction model for these patients by interpretable machine learning (ML) methods. Data were sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV, version 2.2). Predictors were selected by Least absolute shrinkage and selection operator (LASSO) regression and checked for multicollinearity with Spearman's correlation. Patients were randomly assigned to training and validation sets in an 8:2 ratio. Seven ML algorithms were used to construct models in the training set. Model performance was evaluated in the validation set using metrics such as area under the curve (AUC) with 95% confidence interval (CI), calibration curves, precision, recall, F1 score, accuracy, negative predictive value (NPV), and positive predictive value (PPV). The significance of differences in predictive performance among models was assessed utilising the permutation test, and 10-fold cross-validation further validated the model's performance. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) were applied to interpret the models. The study included 2,828 patients with AMI combined with DM. Nineteen predictors were identified through LASSO regression and Spearman's correlation. The Random Forest (RF) model was demonstrated the best performance, with an AUC of 0.823 (95% CI: 0.774-0.872), high precision (0.867), accuracy (0.873), and PPV (0.867). The RF model showed significant differences (p < 0.05) compared to the K-Nearest Neighbours and Decision Tree models. Calibration curves indicated that the RF model's predicted risk aligned well with actual outcomes. 10-fold cross-validation confirmed the superior performance of RF model, with an average AUC of 0.828 (95% CI: 0.800-0.842). Significant Variables in RF model indicated that the top eight significant predictors were urine output, maximum anion gap, maximum urea nitrogen, age, minimum pH, maximum international normalised ratio (INR), mean respiratory rate, and mean systolic blood pressure. This study demonstrates the potential of ML methods, particularly the RF model, in predicting in-hospital mortality risk for AMI patients with DM. The SHAP and LIME methods enhance the interpretability of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
落后金鑫发布了新的文献求助10
1秒前
1秒前
大个应助刘子琪采纳,获得30
1秒前
1秒前
2秒前
4秒前
英俊的铭应助高贵小蘑菇采纳,获得10
4秒前
Lucas应助wangran_778采纳,获得10
5秒前
Zz发布了新的文献求助10
6秒前
贼佛的小德完成签到,获得积分10
6秒前
qcck完成签到,获得积分10
7秒前
圆圆金发布了新的文献求助10
7秒前
遇上就这样吧应助Emilia采纳,获得200
7秒前
xixi关注了科研通微信公众号
7秒前
8秒前
迅速的丑发布了新的文献求助10
8秒前
8秒前
柚子发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
11秒前
魔道祖师发布了新的文献求助10
12秒前
浮游应助cai采纳,获得10
12秒前
所所应助一个小柠檬采纳,获得10
12秒前
13秒前
Hello应助三千采纳,获得10
14秒前
Akim应助aga采纳,获得10
14秒前
li完成签到,获得积分10
15秒前
ref:rain完成签到,获得积分10
15秒前
15秒前
G.Huang发布了新的文献求助10
15秒前
小刘发布了新的文献求助10
15秒前
眼睛大的冰岚完成签到,获得积分10
16秒前
博慧完成签到,获得积分10
16秒前
聂瑾发布了新的文献求助10
16秒前
风华正茂完成签到,获得积分10
18秒前
万能图书馆应助拍桌子采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307271
求助须知:如何正确求助?哪些是违规求助? 4453001
关于积分的说明 13855757
捐赠科研通 4340578
什么是DOI,文献DOI怎么找? 2383323
邀请新用户注册赠送积分活动 1378137
关于科研通互助平台的介绍 1345951