催化作用
纳米反应器
化学工程
氧化剂
传质
材料科学
纳米技术
吸附
溶解
碳纤维
化学
有机化学
工程类
色谱法
复合数
复合材料
作者
Ya Liu,Yuxian Wang,Yupeng Wang,Jie Miao,Jiajia Yang,Kunsheng Hu,Hongqi Sun,Jiadong Xiao,Chunmao Chen,Xiaoguang Duan,Shaobin Wang
标识
DOI:10.1002/anie.202504571
摘要
Precise engineering single‐atom catalysts (SACs) with optimal hierarchical structures and favorable local chemical environment remains a significant challenge to cater for multiphase heterogeneous processes. Here, we develop a universal strategy for synthesizing channel‐digging microspherical SACs that markedly enhance gas–liquid–solid mass transfer and fine‐tune the thermodynamics of catalytic ozonation. By catalytically graphitizing carbon microspheres and selectively etching amorphous carbon domains via mild combustion, we fabricate cross‐linked hierarchical graphitic nanochannels confining transition metal (e.g., Co, Cr, Mn, Fe, Ni) single atoms (TMCSs‐Air). This nanoenvironment engineering increases interfacial O3 mass transfer by 3.2‐fold and directs O3 adsorption from a conventional “end‐on” to a bidental “side‐on” configuration. The enhanced inter‐orbital electronic interactions lower the O3 activation barrier and form highly oxidizing surface‐confined O3 (*O3). Consequently, the CoCSs‐Air catalyst achieves a 3.6‐fold higher ozone utilization efficiency and a 4.2‐fold greater turnover frequency (TOF = 1580 min−1) compared with pristine Co‐SAC‐doped carbon microspheres. Technical and economic evaluations further confirm the feasibility of TMCSs‐Air nanoreactors in treating real‐world petrochemical wastewater, highlighting its broader potential in overcoming gas diffusion barriers and tuning reaction pathways for multiphase heterogeneous catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI