氧化还原
阴极
钴
电解质
材料科学
化学工程
氧气
离子键合
扩散
化学
离子
电极
物理化学
热力学
冶金
工程类
物理
有机化学
作者
Maolin Yang,Tao Zeng,Dongyu He,Zheng Jiao,Sijia Chen,Wenguang Zhao,Yongsheng Li,Ziwei Chen,Yuguang Pu,Yongbiao Mu,Ze He,Xiaoyu Gao,Mihai Chu,Wenhai Ji,Lei Cao,Juping Xu,Wen Yin,Rui Wang,Yinguo Xiao
出处
期刊:Small
[Wiley]
日期:2025-04-14
标识
DOI:10.1002/smll.202502469
摘要
Abstract Morphology engineering plays a critical role in enhancing ionic diffusion kinetics and activating oxygen redox activity in cobalt‐free lithium‐rich layered oxides (LROs), addressing their intrinsic limitations for high‐energy‐density batteries. Herein, a morphology‐engineering strategy is proposed to synthesize cobalt‐free LRO cathodes with radially arranged primary grains (LRO‐RA) and short rod‐like grains (LRO‐SR). The radial architecture of LRO‐RA establishes fast Li + diffusion pathways, as evidenced by its near‐identical Li + diffusion coefficient to LRO‐SR despite dominating oxygen redox contributions. This accelerated ion transport facilitates reversible anionic redox, yielding a 79 mAh g −1 higher initial discharge capacity (0.1C) and a 50.6 mV lower O oxidation potential compared to LRO‐SR. Advanced spectroscopic and diffraction analyses confirm that the radial morphology stabilizes anionic redox, minimizes MnO 6 distortion, and mitigates strain accumulation. Consequently, LRO‐RA achieves a 94.8% capacity retention after 400 cycles (1C), far exceeding LRO‐SR (75.6%), with mitigated voltage decay. Post‐cycling analysis confirms that the dense radial grains resist electrolyte infiltration and phase transformation, preserving structural integrity. This work elucidates how morphology‐driven ion transport optimization amplifies oxygen redox reversibility, offering a universal design principle for high‐capacity Li‐rich cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI