Morphology Engineering in Cobalt‐Free Li‐Rich Oxides for High‐Capacity and Strain‐Tolerant Cathodes

氧化还原 阴极 电解质 材料科学 化学工程 氧气 离子键合 扩散 化学 离子 电极 物理化学 热力学 冶金 工程类 物理 有机化学
作者
Maolin Yang,Tao Zeng,Dongyu He,Zheng Jiao,Sijia Chen,Wenguang Zhao,Yongsheng Li,Ziwei Chen,Yuguang Pu,Yongbiao Mu,Ze He,Xiaoyu Gao,Mihai Chu,Wenhai Ji,Lei Cao,Juping Xu,Wen Yin,Rui Wang,Yinguo Xiao
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202502469
摘要

Abstract Morphology engineering plays a critical role in enhancing ionic diffusion kinetics and activating oxygen redox activity in cobalt‐free lithium‐rich layered oxides (LROs), addressing their intrinsic limitations for high‐energy‐density batteries. Herein, a morphology‐engineering strategy is proposed to synthesize cobalt‐free LRO cathodes with radially arranged primary grains (LRO‐RA) and short rod‐like grains (LRO‐SR). The radial architecture of LRO‐RA establishes fast Li + diffusion pathways, as evidenced by its near‐identical Li + diffusion coefficient to LRO‐SR despite dominating oxygen redox contributions. This accelerated ion transport facilitates reversible anionic redox, yielding a 79 mAh g −1 higher initial discharge capacity (0.1C) and a 50.6 mV lower O oxidation potential compared to LRO‐SR. Advanced spectroscopic and diffraction analyses confirm that the radial morphology stabilizes anionic redox, minimizes MnO 6 distortion, and mitigates strain accumulation. Consequently, LRO‐RA achieves a 94.8% capacity retention after 400 cycles (1C), far exceeding LRO‐SR (75.6%), with mitigated voltage decay. Post‐cycling analysis confirms that the dense radial grains resist electrolyte infiltration and phase transformation, preserving structural integrity. This work elucidates how morphology‐driven ion transport optimization amplifies oxygen redox reversibility, offering a universal design principle for high‐capacity Li‐rich cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卿卿发布了新的文献求助10
1秒前
yao完成签到,获得积分10
1秒前
1秒前
wsx4321应助jin采纳,获得20
2秒前
Graziella发布了新的文献求助10
2秒前
2秒前
现代的bb发布了新的文献求助10
2秒前
Muller完成签到,获得积分10
3秒前
炒面发布了新的文献求助10
3秒前
3秒前
Jasper应助qianshu采纳,获得30
4秒前
4秒前
5秒前
5秒前
5秒前
科目三应助忐忑的阑香采纳,获得10
6秒前
羽翼发布了新的文献求助10
6秒前
碧蓝飞鸟完成签到 ,获得积分10
6秒前
仿真小学生应助王晨昕采纳,获得30
6秒前
jgs完成签到,获得积分10
6秒前
6秒前
个性的迎夏完成签到,获得积分10
7秒前
1111111完成签到,获得积分10
7秒前
刘吉瀚完成签到,获得积分20
8秒前
8秒前
CipherSage应助YQ采纳,获得10
8秒前
Graziella完成签到,获得积分10
8秒前
晶生完成签到,获得积分10
8秒前
Young完成签到 ,获得积分10
8秒前
科研通AI5应助活泼的雁玉采纳,获得10
8秒前
8秒前
如意以晴完成签到,获得积分10
9秒前
9秒前
jackycas发布了新的文献求助10
9秒前
doctor_loong发布了新的文献求助10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
宇噢噢噢噢完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031