二部图
计算机科学
调度(生产过程)
同步(交流)
数学优化
控制理论(社会学)
李雅普诺夫函数
参数统计
分布式计算
非线性系统
数学
理论计算机科学
控制(管理)
计算机网络
图形
频道(广播)
人工智能
物理
统计
量子力学
作者
Yuan Zhou,Yongfang Liu,Yu Zhao,Ming Cao,Guanrong Chen
出处
期刊:Automatica
[Elsevier]
日期:2023-12-22
卷期号:161: 111459-111459
被引量:26
标识
DOI:10.1016/j.automatica.2023.111459
摘要
Investigating the prescribed-time synchronization problem for multiple linear agents is challenging because the states and inputs of the system are coupled through the state-input matrix pair. To address this challenge, this paper develops a gain scheduling strategy for linear multi-agent systems over a cooperative-antagonistic network. First, the strategy converts the problem to a time-varying parameter design problem using a time-varying parametric Lyapunov equation (TVPLE). By exploiting the time-varying solution to TVPLE for designing the feedback gains, prescribed-time bipartite synchronization protocols are designed for systems over undirected and directed networks, respectively. These protocols require some global information; therefore, edge- and node-based adaptive gain scheduling strategies are further developed to achieve the prescribed-time bipartite synchronization in a fully distributed manner, which guarantees simultaneous convergence of both state synchronization and adaptive gains within a prescribed time. Finally, a simulation example is presented to demonstrate the effectiveness of the designed adaptive protocols.
科研通智能强力驱动
Strongly Powered by AbleSci AI