EMSIN: Enhanced Multi-Stream Interaction Network for Vehicle Trajectory Prediction

弹道 计算机科学 人工智能 物理 天文
作者
Yilong Ren,Zhengxing Lan,Lingshan Liu,Haiyang Yu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:23
标识
DOI:10.1109/tfuzz.2024.3360946
摘要

Predicting the future trajectories of dynamic traffic actors is the Gordian knot for autonomous vehicles to achieve collision-free driving. Most existing works suffer from a gap in characterizing the evolving interactions of scenario components and ensuring the physical feasibility of predictions, particularly in highly heterogeneous scenarios. Therefore, we propose an Enhanced Multi-Stream Interaction Network (EMSIN), which is devoted to providing accurate trajectory predictions. EMSIN highlights several threads of high-level time-varying interactions, including agent-traffic semantic, self-trend, and agentagent dependencies. A novelly-designed trend-aware mechanism is developed to capture the self-trend interactions from different representation subspaces sufficiently. To model the spatial information of traffic agents and extract their evolutions, we present a dynamic adaptive graph convolutional network that extends previously predefined graph paradigms. The adaptive and dynamic graphs in EMSIN are created using learnable node embeddings, allowing the model to discern interaction strengths without additional attention modules. Finally, all highlevel feature spaces elaborating multi-stream interactions are fused to generate possible agent actions with corresponding confidence values. Comprehensive experiments conducted on both L5kit and nuScenes datasets demonstrate that EMSIN surpasses its counterparts, boasting smaller prediction errors and faster inference times. This study also introduces a fuzzy-based metric to probe the physical feasibility of predicted trajectories, providing valuable insights into appraising the performance of various prediction models from the perspective of fuzziness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GIDASOX发布了新的文献求助10
1秒前
求文完成签到,获得积分10
1秒前
Edwyna完成签到,获得积分20
1秒前
古枂发布了新的文献求助10
2秒前
vvA11完成签到,获得积分10
4秒前
玩命的毛衣完成签到 ,获得积分10
4秒前
4秒前
xiao完成签到,获得积分20
6秒前
6秒前
顾矜应助小小月采纳,获得10
7秒前
小牛同志完成签到,获得积分10
7秒前
李爱国应助甜美白昼采纳,获得10
8秒前
嚯嚯完成签到,获得积分10
9秒前
杨sir完成签到,获得积分10
10秒前
wuwu完成签到,获得积分10
10秒前
着急的芹菜完成签到,获得积分10
11秒前
打打应助ZQL采纳,获得10
11秒前
等风关注了科研通微信公众号
12秒前
寒冷依秋发布了新的文献求助10
12秒前
12秒前
梁晓雅完成签到,获得积分10
12秒前
13秒前
小二郎应助背后的巧荷采纳,获得10
14秒前
14秒前
幽默的绿草完成签到,获得积分10
15秒前
16秒前
朴素尔蝶发布了新的文献求助20
16秒前
刘晓蕾完成签到,获得积分10
17秒前
Agnes鹿完成签到,获得积分20
18秒前
高贵的乐天完成签到 ,获得积分10
18秒前
Guo5082发布了新的文献求助10
18秒前
乐乐应助Mere Chen采纳,获得10
19秒前
123发布了新的文献求助10
19秒前
starlx0813发布了新的文献求助10
19秒前
小橘子完成签到 ,获得积分10
19秒前
20秒前
20秒前
互助遵法尚德应助古枂采纳,获得10
22秒前
橙子发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452053
求助须知:如何正确求助?哪些是违规求助? 3919288
关于积分的说明 12164581
捐赠科研通 3569382
什么是DOI,文献DOI怎么找? 1960117
邀请新用户注册赠送积分活动 999454
科研通“疑难数据库(出版商)”最低求助积分说明 894429