深度学习
计算机科学
人工智能
代表(政治)
图像(数学)
过程(计算)
图像检索
相位恢复
模式识别(心理学)
对象(语法)
相(物质)
计算机视觉
机器学习
数学
傅里叶变换
法学
操作系统
化学
有机化学
数学分析
政治
政治学
作者
Carlos Osorio Quero,Daniel Leykam,Irving Rondón
摘要
Conventional deep learning-based image reconstruction methods require a large amount of training data which can be hard to obtain in practice. Untrained deep learning methods overcome this limitation by training a network to invert a physical model of the image formation process. Here we present a novel untrained Res-U2Net model for phase retrieval. We use the extracted phase information to determine changes in an object's surface and generate a mesh representation of its 3D structure. We compare the performance of Res-U2Net phase retrieval against UNet and U2Net using images from the GDXRAY dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI