Including soil depth as a predictor variable increases prediction accuracy of SOC stocks

变量(数学) 计量经济学 环境科学 土壤科学 统计 数学 数学分析
作者
Jiaying Li,Feng Liu,Wenjiao Shi,Zhengping Du,Xiangzheng Deng,Yuxin Ma,Xiaoli Shi,Mo Zhang,Qiquan Li
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:238: 106007-106007 被引量:3
标识
DOI:10.1016/j.still.2024.106007
摘要

Accurate estimates of soil organic carbon (SOC) stocks are important in understanding terrestrial carbon cycling. Based on the fundamental theorem of surfaces, an alternative method, high accuracy surface modelling (HASM) combined with soil depth information was applied to predict the spatial pattern of SOC stocks in Hebei Province, China. In this study, we collected 434 soil samples and key environmental covariates related to soil-forming factors (soil, climate, organisms, topography, and soil depth information) in the study area, and compared the accuracy of 16 spatial prediction models (including single models, hybrid models, and HASM combined with single or hybrid models) on the spatial distribution of SOC stocks. The results confirmed that the method of HASM combined with the generalized additive model (GAM) with soil depth covariate (HASM_GAMD) achieved a better performance than other methods at soil depths of 0–30, 0–100 and 0–200 cm. The root-mean-square error and coefficient of determination values of predicting the spatial pattern of SOC stocks by the HASM_GAMD model demonstrated a 43% and 49% improvement, respectively, compared with models without depth information. The prediction uncertainty of the HASM_GAMD model based on 90% prediction interval was lower than that of other models. The HASM_GAMD model excels in addressing not only the nonlinear relationship between covariates and SOC stocks, but also in incorporating point observation data that varies with soil depth. Furthermore, the model conducts modelling by integrating surface and optimal control theories. Results obtained from the HASM_GAMD demonstrated that the SOC stocks in Hebei Province amounted to 1449.08 Tg C. Our study introduces an alternative model for modelling of SOC stocks and our findings are a valuable reference for assessing carbon stocks in Hebei Province to support sustainable land management and climate change mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎书禾完成签到,获得积分10
刚刚
褚明雪完成签到,获得积分10
1秒前
1秒前
innocence2000完成签到 ,获得积分10
7秒前
Yonckham完成签到,获得积分10
7秒前
QIANGYI完成签到 ,获得积分10
8秒前
田様应助科研通管家采纳,获得10
10秒前
柚子应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
柚子应助科研通管家采纳,获得10
10秒前
张斯瑞完成签到,获得积分10
16秒前
shezhinicheng完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
20秒前
木木完成签到 ,获得积分10
20秒前
alooof完成签到 ,获得积分10
21秒前
岁月如歌完成签到 ,获得积分0
21秒前
dayday完成签到,获得积分10
22秒前
冬烜完成签到 ,获得积分10
23秒前
Jeffrey完成签到,获得积分10
29秒前
明理雨筠完成签到,获得积分10
31秒前
丝丢皮得完成签到 ,获得积分10
33秒前
居居侠完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
37秒前
yy完成签到 ,获得积分10
44秒前
leaolf应助Lancelot采纳,获得100
48秒前
科研通AI2S应助puyu采纳,获得20
51秒前
51秒前
金勇完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助20
52秒前
WSY完成签到 ,获得积分10
54秒前
WSY完成签到 ,获得积分10
54秒前
落雪慕卿颜完成签到,获得积分10
54秒前
小燕子完成签到 ,获得积分10
55秒前
56秒前
行云流水完成签到,获得积分10
56秒前
飘逸善若完成签到,获得积分10
57秒前
科研通AI2S应助称心的以蕊采纳,获得10
59秒前
韧迹完成签到 ,获得积分10
1分钟前
seacnli完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223246
求助须知:如何正确求助?哪些是违规求助? 3756299
关于积分的说明 11807113
捐赠科研通 3418862
什么是DOI,文献DOI怎么找? 1876405
邀请新用户注册赠送积分活动 930030
科研通“疑难数据库(出版商)”最低求助积分说明 838341