Multi-lead-time short-term runoff forecasting based on Ensemble Attention Temporal Convolutional Network

计算机科学 稳健性(进化) 人工智能 快照(计算机存储) 机器学习 深度学习 计算 数据挖掘 算法 数据库 生物化学 化学 基因
作者
Chunxiao Zhang,Ziyu Sheng,Chunlei Zhang,Shiping Wen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122935-122935 被引量:11
标识
DOI:10.1016/j.eswa.2023.122935
摘要

In the realm of ecological management and human activities within river basins, short-term runoff forecasting plays a pivotal role. Addressing this need, this paper introduces an innovative framework for short-term runoff forecasting: the Ensemble Attention Temporal Convolutional Network (EA-TCN). The cornerstone of this innovation lies in the effective amalgamation of Temporal Convolutional Network (TCN), lightweight attention mechanism, and ensemble learning strategy. This integration synergistically enhances the model’s overall performance in terms of accuracy, efficiency, and robustness. TCN forms the foundation of this framework, where its efficient architecture, characterized by shared parameters and parallel computation, significantly boosts computational efficiency. Its employment of causal and dilated convolutions adeptly captures long-term dependencies within time series inputs. The incorporated lightweight attention mechanism further augments the TCN, enabling EA-TCN to precisely discern complex relationship in temporal data, particularly exhibiting remarkable temporal robustness across various forecasting horizons—a feat challenging for conventional forecasting approaches. Additionally, the integration of the Snapshot ensemble method within the framework allows for simulating the effect of training multiple models through one single training process, thus further elevating the model’s accuracy and robustness. Rigorous ablation and comparative experiments conducted on the US Columbia River dataset substantiate our claims. The results not only validate the individual merits of each component within EA-TCN but also illuminate the significant advantages of their collective application. Our comprehensive assessment unequivocally demonstrates the framework’s exceptional performance in short-term runoff forecasting, positioning it as a state-of-the-art solution in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情糖豆完成签到,获得积分10
3秒前
4秒前
wy.he应助热情糖豆采纳,获得10
9秒前
10秒前
LIJINGGE发布了新的文献求助10
10秒前
12秒前
wanci应助zzn采纳,获得10
15秒前
端庄梦桃发布了新的文献求助10
17秒前
18秒前
所所应助土豆采纳,获得10
19秒前
22秒前
Raymond发布了新的文献求助10
24秒前
28秒前
LIJINGGE发布了新的文献求助10
29秒前
领导范儿应助糯米糍采纳,获得10
30秒前
32秒前
33秒前
33秒前
ldh032应助哈哈哈采纳,获得10
34秒前
35秒前
35秒前
努力努力再努力CMY完成签到,获得积分10
37秒前
37秒前
zzn发布了新的文献求助10
38秒前
librahapper发布了新的文献求助10
38秒前
土豆发布了新的文献求助10
39秒前
東南風完成签到,获得积分10
40秒前
41秒前
41秒前
李健的小迷弟应助sugar采纳,获得10
42秒前
valere完成签到 ,获得积分10
42秒前
dududu发布了新的文献求助10
43秒前
43秒前
44秒前
科研通AI2S应助vex采纳,获得10
45秒前
Mandy完成签到,获得积分20
45秒前
heheha发布了新的文献求助10
47秒前
48秒前
48秒前
英姑应助dududu采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401