计算机科学
稳健性(进化)
人工智能
快照(计算机存储)
机器学习
深度学习
计算
数据挖掘
算法
数据库
生物化学
化学
基因
作者
Chunxiao Zhang,Ziyu Sheng,Chunlei Zhang,Shiping Wen
标识
DOI:10.1016/j.eswa.2023.122935
摘要
In the realm of ecological management and human activities within river basins, short-term runoff forecasting plays a pivotal role. Addressing this need, this paper introduces an innovative framework for short-term runoff forecasting: the Ensemble Attention Temporal Convolutional Network (EA-TCN). The cornerstone of this innovation lies in the effective amalgamation of Temporal Convolutional Network (TCN), lightweight attention mechanism, and ensemble learning strategy. This integration synergistically enhances the model’s overall performance in terms of accuracy, efficiency, and robustness. TCN forms the foundation of this framework, where its efficient architecture, characterized by shared parameters and parallel computation, significantly boosts computational efficiency. Its employment of causal and dilated convolutions adeptly captures long-term dependencies within time series inputs. The incorporated lightweight attention mechanism further augments the TCN, enabling EA-TCN to precisely discern complex relationship in temporal data, particularly exhibiting remarkable temporal robustness across various forecasting horizons—a feat challenging for conventional forecasting approaches. Additionally, the integration of the Snapshot ensemble method within the framework allows for simulating the effect of training multiple models through one single training process, thus further elevating the model’s accuracy and robustness. Rigorous ablation and comparative experiments conducted on the US Columbia River dataset substantiate our claims. The results not only validate the individual merits of each component within EA-TCN but also illuminate the significant advantages of their collective application. Our comprehensive assessment unequivocally demonstrates the framework’s exceptional performance in short-term runoff forecasting, positioning it as a state-of-the-art solution in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI