Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network—based model on sparsely annotated MRI

磁共振成像 医学 垂体腺瘤 分割 人工智能 卷积神经网络 颈内动脉 放射科 垂体瘤 计算机科学 腺瘤 垂体 病理 内科学 激素
作者
Martin Černý,Jan Kybic,Martin Májovský,Vojtěch Sedlák,Karin Pirgl,Eva Misiorzová,Radim Lipina,David Netuka
出处
期刊:Neurosurgical Review [Springer Nature]
卷期号:46 (1): 116-116 被引量:8
标识
DOI:10.1007/s10143-023-02014-3
摘要

This study aims to develop a fully automated imaging protocol independent system for pituitary adenoma segmentation from magnetic resonance imaging (MRI) scans that can work without user interaction and evaluate its accuracy and utility for clinical applications. We trained two independent artificial neural networks on MRI scans of 394 patients. The scans were acquired according to various imaging protocols over the course of 11 years on 1.5T and 3T MRI systems. The segmentation model assigned a class label to each input pixel (pituitary adenoma, internal carotid artery, normal pituitary gland, background). The slice segmentation model classified slices as clinically relevant (structures of interest in slice) or irrelevant (anterior or posterior to sella turcica). We used MRI data of another 99 patients to evaluate the performance of the model during training. We validated the model on a prospective cohort of 28 patients, Dice coefficients of 0.910, 0.719, and 0.240 for tumour, internal carotid artery, and normal gland labels, respectively, were achieved. The slice selection model achieved 82.5% accuracy, 88.7% sensitivity, 76.7% specificity, and an AUC of 0.904. A human expert rated 71.4% of the segmentation results as accurate, 21.4% as slightly inaccurate, and 7.1% as coarsely inaccurate. Our model achieved good results comparable with recent works of other authors on the largest dataset to date and generalized well for various imaging protocols. We discussed future clinical applications, and their considerations. Models and frameworks for clinical use have yet to be developed and evaluated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yyyy发布了新的文献求助10
1秒前
陈帅发布了新的文献求助10
1秒前
2秒前
2秒前
燕子完成签到,获得积分10
3秒前
楠沅完成签到,获得积分10
3秒前
3秒前
deng发布了新的文献求助10
4秒前
SciGPT应助微笑的严青采纳,获得10
4秒前
好啊完成签到,获得积分10
4秒前
5秒前
lin发布了新的文献求助10
5秒前
6秒前
Anovel完成签到,获得积分10
6秒前
所所应助宋祝福采纳,获得10
7秒前
顾矜应助wjx采纳,获得10
7秒前
7秒前
swt1022发布了新的文献求助10
7秒前
汉堡包应助qiuqiu采纳,获得10
8秒前
9秒前
想要礼物的艾斯米拉达完成签到,获得积分10
9秒前
9秒前
开朗凡松发布了新的文献求助10
10秒前
yunfulu29发布了新的文献求助20
10秒前
10秒前
蛇從革应助JOJO采纳,获得30
10秒前
浮游应助生菜生菜采纳,获得10
10秒前
hyekyo发布了新的文献求助30
11秒前
11秒前
乔垣结衣发布了新的文献求助10
12秒前
浮游应助xian采纳,获得10
13秒前
Orange应助欧气青年采纳,获得10
13秒前
14秒前
烟花应助砚木采纳,获得10
14秒前
xxb发布了新的文献求助10
14秒前
英姑应助单薄小蜜蜂采纳,获得10
14秒前
李诚信发布了新的文献求助10
14秒前
14秒前
宋祝福完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351421
求助须知:如何正确求助?哪些是违规求助? 4484506
关于积分的说明 13959313
捐赠科研通 4384100
什么是DOI,文献DOI怎么找? 2408752
邀请新用户注册赠送积分活动 1401355
关于科研通互助平台的介绍 1374851