Clinical Applications of Machine Learning for Urolithiasis and Benign Prostatic Hyperplasia: A Systematic Review

医学 检查表 泌尿科 梅德林 增生 系统回顾 数据提取 算法 人工智能 内科学 计算机科学 心理学 政治学 认知心理学 法学
作者
David Bouhadana,Xing Han Lù,Jack W. Luo,Anis Assad,Claudia Deyirmendjian,Abbas Guennoun,David‐Dan Nguyen,Jethro C.C. Kwong,Bilal Chughtai,Dean Elterman,Kevin C. Zorn,Quoc‐Dien Trinh,Naeem Bhojani
出处
期刊:Journal of Endourology [Mary Ann Liebert, Inc.]
卷期号:37 (4): 474-494 被引量:9
标识
DOI:10.1089/end.2022.0311
摘要

Introduction: Previous systematic reviews related to machine learning (ML) in urology often overlooked the literature related to endourology. Therefore, we aim to conduct a more focused systematic review examining the use of ML algorithms for the management of benign prostatic hyperplasia (BPH) or urolithiasis. In addition, we are the first group to evaluate these articles using the Standardized Reporting of Machine Learning Applications in Urology (STREAM-URO) framework. Methods: Searches of MEDLINE, Embase, and the Cochrane CENTRAL databases were conducted from inception through July 12, 2021. Keywords included those related to ML, endourology, urolithiasis, and BPH. Two reviewers screened the citations that were eligible for title, abstract, and full-text screening, with conflicts resolved by a third reviewer. Two reviewers extracted information from the studies, with discrepancies resolved by a third reviewer. The data collected were then qualitatively synthesized by consensus. Two reviewers evaluated each article according to the STREAM-URO checklist with discrepancies resolved by a third reviewer. Results: After identifying 459 unique citations, 63 articles were retained for data extraction. Most articles consisted of tabular (n = 32) and computer vision (n = 23) tasks. The two most common problem types were classification (n = 40) and regression (n = 12). In general, most studies utilized neural networks as their ML algorithm (n = 36). Among the 63 studies retrieved, 58 were related to urolithiasis and 5 focused on BPH. The urolithiasis studies were designed for outcome prediction (n = 20), stone classification (n = 18), diagnostics (n = 17), and therapeutics (n = 3). The BPH studies were designed for outcome prediction (n = 2), diagnostics (n = 2), and therapeutics (n = 1). On average, the urolithiasis and BPH articles met 13.8 (standard deviation 2.6), and 13.4 (4.1) of the 26 STREAM-URO framework criteria, respectively. Conclusions: The majority of the retrieved studies effectively helped with outcome prediction, diagnostics, and therapeutics for both urolithiasis and BPH. While ML shows great promise in improving patient care, it is important to adhere to the recently developed STREAM-URO framework to ensure the development of high-quality ML studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星发布了新的文献求助30
刚刚
小何同学发布了新的文献求助10
1秒前
丘比特应助谢雨晨采纳,获得10
1秒前
夏青荷发布了新的文献求助10
1秒前
科目三应助DQY采纳,获得14
2秒前
远志发布了新的文献求助10
2秒前
2秒前
daxiooo11发布了新的文献求助30
3秒前
3秒前
科研通AI5应助wqsnlyq采纳,获得10
3秒前
汉堡包应助hhh采纳,获得10
3秒前
大个应助hhh采纳,获得10
3秒前
sbc完成签到,获得积分20
4秒前
王嘉尔完成签到,获得积分10
5秒前
天天快乐应助霜序采纳,获得10
5秒前
科研通AI5应助健壮傲芙采纳,获得10
6秒前
6秒前
阳光发布了新的文献求助10
7秒前
重要的哈密瓜完成签到 ,获得积分10
8秒前
所所应助松松果采纳,获得10
8秒前
鲸鱼姐姐发布了新的文献求助10
8秒前
sbc发布了新的文献求助10
9秒前
老马哥完成签到,获得积分0
9秒前
王嘉尔发布了新的文献求助10
10秒前
11秒前
11秒前
听话的捕完成签到,获得积分10
11秒前
12秒前
正丁基锂完成签到,获得积分10
14秒前
辛勤的之玉完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
DQY发布了新的文献求助14
15秒前
悦耳绿真完成签到,获得积分10
15秒前
小马甲应助星星采纳,获得10
16秒前
lulu完成签到,获得积分20
16秒前
17秒前
Alexbirchurros完成签到 ,获得积分10
17秒前
FanKun发布了新的文献求助10
18秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462