Wheat phenology detection with the methodology of classification based on the time-series UAV images

物候学 特征选择 人工智能 遥感 播种 开花 分类器(UML) 模式识别(心理学) 数学 计算机科学 农学 生物 地理 栽培
作者
Meng Zhou,Hengbiao Zheng,Can He,Peng Liu,G.Mustafa Awan,Xue Wang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:292: 108798-108798 被引量:22
标识
DOI:10.1016/j.fcr.2022.108798
摘要

Near real-time crop phenology information can offer significant guidance for the implementation of crop management. Previous approaches to crop phenology detection have relied on time-series vegetation index curves, which can only be formed after the end of the whole phenology. To overcome the lag problem in phenology estimation, this study treats phenology detection as a classification problem based on imaging from an Unmanned Aerial Vehicle (UAV). Wheat field trials over two experimental seasons involved different sowing dates, nitrogen (N) rates, and wheat cultivars. A feature selection algorithm based on the compactness-separation principle (FS-CS) was used to filter the spectral and texture features extracted from time-series UAV images. The multi-level correlation vector machine (mRVM) was used to classify the principal phenological stages, including emergence, tillering, jointing, booting, and heading anthesis, filling, and maturity stages. The results showed that the classification accuracies of each stage were 0.86, 0.87, 0.31, 0.61, 0.22, 0.25, 0.77 and 0.93, respectively. Furthermore, the combination of spectral features and texture features has been proven to compensate for each other’s deficiencies, and the overall accuracy obtained using two features together increased by 27 % and 13 %, respectively. Finally, the efficiency of the feature selection algorithm and classifier used in this study were discussed. The best estimation results were generated using FS-CS and mRVM when the optimal number of features was small. This research provides theoretical support for instantaneous detection of crop phenology based on remote sensing and imaging technology, and also provides technical guidance for efficient real-time discrimination of crop phenology using mono-temporal UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
academician完成签到,获得积分10
2秒前
小卢卢快闭嘴完成签到,获得积分10
3秒前
Orange应助刘敏小七采纳,获得10
4秒前
WSDD-ya完成签到,获得积分10
4秒前
Alicia完成签到,获得积分10
5秒前
草壁米完成签到,获得积分10
5秒前
科研小白书hz完成签到 ,获得积分10
8秒前
唱唱哟完成签到 ,获得积分10
9秒前
qiao应助ZZ采纳,获得10
9秒前
lulalula完成签到,获得积分10
11秒前
Pengzhuhuai完成签到,获得积分10
11秒前
斯寜应助鼻揩了转去采纳,获得10
13秒前
阳光明明完成签到 ,获得积分10
13秒前
qiao应助ANON_TOKYO采纳,获得10
15秒前
粒子完成签到,获得积分10
20秒前
25秒前
立华奏完成签到,获得积分10
26秒前
yellowonion完成签到 ,获得积分10
28秒前
Orange应助称心寒松采纳,获得10
28秒前
仁爱柠檬完成签到,获得积分10
28秒前
谭凯文完成签到 ,获得积分10
30秒前
毕业发布了新的文献求助10
32秒前
33秒前
baobaonaixi完成签到,获得积分10
35秒前
17完成签到 ,获得积分10
36秒前
shjyang发布了新的文献求助10
38秒前
39秒前
39秒前
40秒前
隐形曼青应助北秋颐采纳,获得10
41秒前
称心寒松发布了新的文献求助10
42秒前
略略完成签到,获得积分10
43秒前
wayne完成签到 ,获得积分10
44秒前
44秒前
潘贤铖发布了新的文献求助10
48秒前
Orange应助科研通管家采纳,获得10
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
50秒前
Ava应助科研通管家采纳,获得10
50秒前
乐乐应助科研通管家采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751