亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Coal Dust Wettability Identification Based on GA–BP Model

遗传算法 润湿 极限学习机 粒子群优化 算法 稳健性(进化) 人工神经网络 煤尘 鉴定(生物学) 计算机科学 生物系统 人工智能 模式识别(心理学) 工程类 化学 机器学习 化学工程 废物管理 生物 生物化学 植物 基因
作者
Haotian Zheng,Shulei Shi,Bingyou Jiang,Yuannan Zheng,Shanshan Li,Haoyu Wang
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:20 (1): 624-624 被引量:14
标识
DOI:10.3390/ijerph20010624
摘要

Aiming at the problems of the influencing factors of coal mine dust wettability not being clear and the identification process being complicated, this study proposed a coal mine dust wettability identification method based on a back propagation (BP) neural network optimized by a genetic algorithm (GA). Firstly, 13 parameters of the physical and chemical properties of coal dust, which affect the wettability of coal dust, were determined, and on this basis, the initial weight and threshold of the BP neural network were optimized by combining the parallelism and robustness of the genetic algorithm, etc., and an adaptive GA–BP model, which could reasonably identify the wettability of coal dust was constructed. The extreme learning machine (ELM) algorithm is a single hidden layer neural network, and the training speed is faster than traditional neural networks. The particle swarm optimization (PSO) algorithm optimizes the weight and threshold of the ELM, so PSO–ELM could also realize the identification of coal dust wettability. The results showed that by comparing the four different models, the accuracy of coal dust wettability identification was ranked as GA–BP > PSO–ELM > ELM > BP. When the maximum iteration times and population size of the PSO algorithm and the GA algorithm were the same, the running time of the different models was also different, and the time consumption was ranked as ELM < BP < PSO–ELM < GA–BP. The GA–BP model had the highest discrimination accuracy for coal mine dust wettability with an accuracy of 96.6%. This study enriched the theory and method of coal mine dust wettability identification and has important significance for the efficient prevention and control of coal mine dust as well as occupational safety and health development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wing完成签到 ,获得积分10
1秒前
Time完成签到,获得积分10
3秒前
六碗鱼完成签到 ,获得积分10
15秒前
运运完成签到 ,获得积分10
18秒前
大渣饼完成签到 ,获得积分10
29秒前
qqJing完成签到,获得积分10
41秒前
喜悦寒凝完成签到,获得积分10
49秒前
51秒前
dreamly完成签到 ,获得积分10
58秒前
1分钟前
CTS完成签到,获得积分10
1分钟前
闪闪飞机发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
过氧化氢应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
没烦恼发布了新的文献求助10
1分钟前
obscure发布了新的文献求助10
1分钟前
1分钟前
胡林发布了新的文献求助10
1分钟前
bkagyin应助dmj采纳,获得10
1分钟前
1分钟前
obscure完成签到 ,获得积分10
2分钟前
英俊的铭应助没烦恼采纳,获得30
2分钟前
老天师一巴掌完成签到 ,获得积分10
2分钟前
闪闪飞机完成签到,获得积分20
2分钟前
2分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
CMRwatermelon发布了新的文献求助10
2分钟前
喵总完成签到,获得积分10
2分钟前
深情安青应助CMRwatermelon采纳,获得10
2分钟前
丘比特应助CMRwatermelon采纳,获得10
2分钟前
领导范儿应助CMRwatermelon采纳,获得10
2分钟前
2分钟前
Otter完成签到,获得积分10
2分钟前
充电宝应助没烦恼采纳,获得10
3分钟前
___淡完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561451
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714431
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775421