Use of the time series and multi-temporal features of Sentinel-1/2 satellite imagery to predict soil inorganic and organic carbon in a low-relief area with a semi-arid environment

环境科学 遥感 地形 随机森林 土壤碳 数字土壤制图 卫星图像 协变量 空间变异性 采样(信号处理) 数据集 时间序列 干旱 卫星 土壤科学 土壤水分 土壤图 计算机科学 地质学 地图学 统计 地理 数学 滤波器(信号处理) 工程类 航空航天工程 机器学习 古生物学 计算机视觉
作者
Younes Garosi,Shamsollah Ayoubi,Madlene Nussbaum,Mohsen Sheklabadi,M Nael,Iman Kimiaee
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (18): 6856-6880 被引量:17
标识
DOI:10.1080/01431161.2022.2147037
摘要

Accurate mapping of soil organic carbon (SOC) and inorganic carbon (SIC) contents at regional scales can be very important for sustainable agriculture and soil management. Low variation in terrain attributes (classically used for digital soil mapping) at low relief areas calls for additional spatial data to explain soil variability. The main objective of this study was to evaluate the predictive capability of Sentinel-1 (radar) and Sentinel-2 (optical) time series and statistics, summarized as multi-temporal features (MTF) to improve the spatial predictions of SOC and SIC in Ghorveh plain, located in Kurdistan Province, Western Iran. A systematic grid sampling was then employed to collect 150 soil surface samples (0–30 cm) for SOC and SIC measurements. We applied boosted regression trees (BRT) and random forest (RF) to predict SOC and SIC contents by using covariate sets compiled from radar and optical time series and topographic attributes. Model performance, evaluated by 10-fold cross-validation, showed that RF using the covariate set containing time series of Sentinel-1, Sentinel-2 and topographic attributes performed the best in predicting SOC (RMSE = 0.23, ME = 0.005, R2 = 0.29). On the other hand, for SIC, the covariate set containing MTF of Sentinel-1, Sentinel-2 and topographic attributes ranked the best with BRT (RMSE = 0.77, ME= −0.001, R2 = 0.48). The study indicates that using the time series and MTF from multiple dates of remote sensing data with topographic attributes results in improved predictions. However, model performance for SIC and SOC was moderate to poor, respectively. Therefore more substantial studies would be required to verify if the computational effort is likely justified by an increase in accuracy in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的孱发布了新的文献求助10
刚刚
刚刚
Bethan发布了新的文献求助30
1秒前
1秒前
LONG完成签到 ,获得积分10
1秒前
李健的小迷弟应助1sss采纳,获得10
2秒前
Clara凤完成签到,获得积分10
4秒前
Jasper应助AAAA采纳,获得10
5秒前
郭嘉仪发布了新的文献求助10
6秒前
飞鹏不会飞完成签到,获得积分10
7秒前
小吴完成签到 ,获得积分10
7秒前
7秒前
Triptolide发布了新的文献求助10
7秒前
8秒前
阿怪12333应助Clara凤采纳,获得10
9秒前
10秒前
LiuHP发布了新的文献求助10
11秒前
12秒前
西北孤傲的狼完成签到,获得积分10
13秒前
1sss发布了新的文献求助10
13秒前
科目三应助谨慎雪冥采纳,获得20
14秒前
华仔应助最专业采纳,获得10
15秒前
超级小喵总完成签到,获得积分10
15秒前
SAY发布了新的文献求助10
16秒前
wzq完成签到 ,获得积分20
17秒前
19秒前
123456777完成签到 ,获得积分10
19秒前
22秒前
22秒前
dongdongyao完成签到,获得积分10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
25秒前
飘逸的山柏完成签到 ,获得积分10
25秒前
Caleb完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224951
求助须知:如何正确求助?哪些是违规求助? 3758317
关于积分的说明 11813581
捐赠科研通 3419885
什么是DOI,文献DOI怎么找? 1876935
邀请新用户注册赠送积分活动 930363
科研通“疑难数据库(出版商)”最低求助积分说明 838582