Classification of mild cognitive impairment based on handwriting dynamics and qEEG

脑电图 笔迹 人工智能 模式识别(心理学) 支持向量机 计算机科学 痴呆 认知障碍 认知 语音识别 心理学 医学 神经科学 疾病 病理
作者
Jiali Chai,Ruixuan Wu,Ang Li,Chen Xue,Yan Qiang,Juanjuan Zhao,Qinghua Zhao,Qianqian Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106418-106418 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.106418
摘要

Subtle changes in fine motor control and quantitative electroencephalography (qEEG) in patients with mild cognitive impairment (MCI) are important in screening for early dementia in primary care populations. In this study, an automated, non-invasive and rapid detection protocol for mild cognitive impairment based on handwriting kinetics and quantitative EEG analysis was proposed, and a classification model based on a dual fusion of feature and decision layers was designed for clinical decision-marking. Seventy-nine volunteers (39 healthy elderly controls and 40 patients with mild cognitive impairment) were recruited for this study, and the handwritten data and the EEG signals were performed using a tablet and MUSE under four designed handwriting tasks. Sixty-eight features were extracted from the EEG and handwriting parameters of each test. Features selected from both models were fused using a late feature fusion strategy with a weighted voting strategy for decision making, and classification accuracy was compared using three different classifiers under handwritten features, EEG features and fused features respectively. The results show that the dual fusion model can further improve the classification accuracy, with the highest classification accuracy for the combined features and the best classification result of 96.3% using SVM with RBF kernel as the base classifier. In addition, this not only supports the greater significance of multimodal data for differentiating MCI, but also tests the feasibility of using the portable EEG headband as a measure of EEG in patients with cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王者完成签到 ,获得积分10
刚刚
音悦台发布了新的文献求助20
刚刚
Tom完成签到,获得积分10
刚刚
CCC完成签到,获得积分10
刚刚
赘婿应助yy采纳,获得10
1秒前
11完成签到,获得积分20
1秒前
语秋发布了新的文献求助10
1秒前
1秒前
1秒前
含蓄的荔枝应助hahaha采纳,获得10
1秒前
乔乔完成签到,获得积分10
1秒前
Owen应助故篱陌陌采纳,获得10
2秒前
含蓄含烟发布了新的文献求助10
3秒前
夕寸完成签到,获得积分10
3秒前
yaya完成签到 ,获得积分10
3秒前
3秒前
善良苠完成签到,获得积分10
4秒前
felix发布了新的文献求助10
4秒前
4秒前
wuxinyi完成签到,获得积分10
4秒前
4秒前
许甜甜鸭应助dhh采纳,获得30
4秒前
嘿嘿应助cc采纳,获得10
5秒前
nannannan完成签到,获得积分20
5秒前
壮观冬寒完成签到,获得积分20
5秒前
科研通AI5应助byliu采纳,获得10
5秒前
6秒前
feng8848完成签到,获得积分10
6秒前
Lijia完成签到,获得积分10
6秒前
JamesPei应助结实的冰真采纳,获得10
7秒前
负责半蕾发布了新的文献求助10
7秒前
蛋妮完成签到 ,获得积分10
7秒前
充电宝应助leo采纳,获得10
8秒前
AU发布了新的文献求助10
9秒前
所所应助壮观冬寒采纳,获得10
9秒前
清秀谷蕊完成签到,获得积分10
10秒前
愉快的孤晴完成签到,获得积分10
10秒前
www应助abcd_1067采纳,获得10
10秒前
故酒应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819