Classification of mild cognitive impairment based on handwriting dynamics and qEEG

脑电图 笔迹 人工智能 模式识别(心理学) 支持向量机 计算机科学 痴呆 认知障碍 认知 语音识别 心理学 医学 神经科学 病理 疾病
作者
Jiali Chai,Ruixuan Wu,Aoyu Li,Chen Xue,Yan Qiang,Juanjuan Zhao,Qinghua Zhao,Qianqian Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106418-106418 被引量:40
标识
DOI:10.1016/j.compbiomed.2022.106418
摘要

Subtle changes in fine motor control and quantitative electroencephalography (qEEG) in patients with mild cognitive impairment (MCI) are important in screening for early dementia in primary care populations. In this study, an automated, non-invasive and rapid detection protocol for mild cognitive impairment based on handwriting kinetics and quantitative EEG analysis was proposed, and a classification model based on a dual fusion of feature and decision layers was designed for clinical decision-marking. Seventy-nine volunteers (39 healthy elderly controls and 40 patients with mild cognitive impairment) were recruited for this study, and the handwritten data and the EEG signals were performed using a tablet and MUSE under four designed handwriting tasks. Sixty-eight features were extracted from the EEG and handwriting parameters of each test. Features selected from both models were fused using a late feature fusion strategy with a weighted voting strategy for decision making, and classification accuracy was compared using three different classifiers under handwritten features, EEG features and fused features respectively. The results show that the dual fusion model can further improve the classification accuracy, with the highest classification accuracy for the combined features and the best classification result of 96.3% using SVM with RBF kernel as the base classifier. In addition, this not only supports the greater significance of multimodal data for differentiating MCI, but also tests the feasibility of using the portable EEG headband as a measure of EEG in patients with cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao发布了新的文献求助20
1秒前
奇客完成签到,获得积分10
2秒前
琪求好运完成签到,获得积分10
3秒前
CipherSage应助12采纳,获得10
3秒前
英俊的铭应助baolongzhan采纳,获得10
5秒前
7秒前
bill完成签到,获得积分10
9秒前
purkid发布了新的文献求助10
9秒前
丹丹发布了新的文献求助10
9秒前
liujiaqi发布了新的文献求助10
10秒前
10秒前
思源应助Ethanyoyo0917采纳,获得10
11秒前
田様应助89采纳,获得10
12秒前
小鱼丸完成签到,获得积分10
13秒前
13秒前
陈某完成签到,获得积分10
13秒前
13秒前
grzzz发布了新的文献求助10
13秒前
科研南完成签到,获得积分10
13秒前
lucky发布了新的文献求助10
15秒前
wang发布了新的文献求助10
16秒前
HP完成签到 ,获得积分10
18秒前
baolongzhan发布了新的文献求助10
18秒前
LSX发布了新的文献求助10
18秒前
changping应助purkid采纳,获得10
19秒前
Orange应助小小雪采纳,获得10
19秒前
丑鸭子完成签到,获得积分20
21秒前
21秒前
Eva完成签到,获得积分10
21秒前
22秒前
22秒前
盏盏应助liujiaqi采纳,获得10
22秒前
马达完成签到,获得积分10
22秒前
张步完成签到 ,获得积分10
22秒前
zz完成签到 ,获得积分10
23秒前
手抓饼啊完成签到,获得积分10
25秒前
徐桐完成签到,获得积分10
25秒前
李健应助cloud采纳,获得10
26秒前
Owen应助watercolding采纳,获得10
26秒前
Huang完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904