A robust and automatic CT‐3D ultrasound registration method based on segmentation, context, and edge hybrid metric

人工智能 图像配准 计算机科学 分割 计算机视觉 Sørensen–骰子系数 体素 公制(单位) 初始化 背景(考古学) 图像分割 模式识别(心理学) 图像(数学) 古生物学 经济 生物 程序设计语言 运营管理
作者
Baochun He,Sheng Zhao,Yanmei Dai,Jiaqi Wu,Huoling Luo,Jianxi Guo,Zhipeng Ni,Tianchong Wu,Fangyuan Kuang,Huijie Jiang,Yanfang Zhang,Fucang Jia
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6243-6258 被引量:1
标识
DOI:10.1002/mp.16396
摘要

The fusion of computed tomography (CT) and ultrasound (US) image can enhance lesion detection ability and improve the success rate of liver interventional radiology. The image-based fusion methods encounter the challenge of registration initialization due to the random scanning pose and limited field of view of US. Existing automatic methods those used vessel geometric information and intensity-based metric are sensitive to parameters and have low success rate. The learning-based methods require a large number of registered datasets for training.The aim of this study is to provide a fully automatic and robust US-3D CT registration method without registered training data and user-specified parameters assisted by the revolutionary deep learning-based segmentation, which can further be used for preparing training samples for the study of learning-based methods.We propose a fully automatic CT-3D US registration method by two improved registration metrics. We propose to use 3D U-Net-based multi-organ segmentation of US and CT to assist the conventional registration. The rigid transform is searched in the space of any paired vessel bifurcation planes where the best transform is decided by a segmentation overlap metric, which is more related to the segmentation precision than Dice coefficient. In nonrigid registration phase, we propose a hybrid context and edge based image similarity metric with a simple mask that can remove most noisy US voxels to guide the B-spline transform registration. We evaluate our method on 42 paired CT-3D US datasets scanned with two different US devices from two hospitals. We compared our methods with other exsiting methods with both quantitative measures of target registration error (TRE) and the Jacobian determinent with paired t-test and qualitative registration imaging results.The results show that our method achieves fully automatic rigid registration TRE of 4.895 mm, deformable registration TRE of 2.995 mm in average, which outperforms state-of-the-art automatic linear methods and nonlinear registration metrics with paired t-test's p value less than 0.05. The proposed overlap metric achieves better results than self similarity description (SSD), edge matching (EM), and block matching (BM) with p values of 1.624E-10, 4.235E-9, and 0.002, respectively. The proposed hybrid edge and context-based metric outperforms context-only, edge-only, and intensity statistics-only-based metrics with p values of 0.023, 3.81E-5, and 1.38E-15, respectively. The 3D US segmentation has achieved mean Dice similarity coefficient (DSC) of 0.799, 0.724, 0.788, and precision of 0.871, 0.769, 0.862 for gallbladder, vessel, and branch vessel, respectively.The deep learning-based US segmentation can achieve satisfied result to assist robust conventional rigid registration. The Dice similarity coefficient-based metrics, hybrid context, and edge image similarity metric contribute to robust and accurate registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
语亦菲扬921完成签到,获得积分10
4秒前
科研通AI5应助学术渣渣采纳,获得10
5秒前
5秒前
ALU完成签到 ,获得积分10
5秒前
北海发布了新的文献求助10
5秒前
7秒前
小范完成签到 ,获得积分10
7秒前
8秒前
zly完成签到,获得积分10
9秒前
9秒前
Hello应助蟹蟹采纳,获得10
10秒前
10秒前
hcsdgf发布了新的文献求助10
12秒前
zy发布了新的文献求助10
13秒前
易千妤发布了新的文献求助10
13秒前
llooookk发布了新的文献求助10
14秒前
北镬伐完成签到,获得积分10
15秒前
斯文败类应助哈哈嘻嘻采纳,获得20
15秒前
15秒前
16秒前
学术渣渣发布了新的文献求助10
17秒前
17秒前
17秒前
小尾巴完成签到 ,获得积分10
17秒前
铎铎铎完成签到 ,获得积分10
17秒前
19秒前
20秒前
21秒前
21秒前
李爱国应助清爽代双采纳,获得10
21秒前
帅气世德发布了新的文献求助10
22秒前
zhrcadd发布了新的文献求助30
22秒前
佟语雪完成签到,获得积分10
23秒前
大力的菠萝完成签到 ,获得积分10
23秒前
jimi完成签到,获得积分10
23秒前
整齐泥猴桃完成签到,获得积分10
24秒前
是小谭呀完成签到,获得积分10
25秒前
25秒前
找文献发布了新的文献求助10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068