A Survey of AI-enabled Dynamic Manufacturing Scheduling: From Directed Heuristics to Autonomous Learning

计算机科学 动态优先级调度 调度(生产过程) 启发式 作业车间调度 自动计划和调度 遗传算法调度 工业工程 人工智能 两级调度 分布式计算 运筹学 地铁列车时刻表 数学优化 数学 工程类 操作系统
作者
Jiepin Ding,Mingsong Chen,Ting Wang,Junlong Zhou,Xin Fu,Keqin Li
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (14s): 1-36 被引量:16
标识
DOI:10.1145/3590163
摘要

As one of the most complex parts in manufacturing systems, scheduling plays an important role in the efficient allocation of resources to meet individual customization requirements. However, due to the uncertain disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and efficiently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic scheduling models that can represent both personalized customer needs and uncertain provider capabilities and (2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article systemically makes a state-of-the-art literature survey on the application of these artificial intelligence techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic scheduling problems that consider service- and task-related disruptions in the manufacturing process, respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manufacturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic scheduling problems including both directed heuristics and autonomous learning methods are reviewed, which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing scheduling and shed light on some related research directions that are worth studying in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kanoz发布了新的文献求助10
刚刚
打打应助青山独归远采纳,获得10
3秒前
3秒前
叶子完成签到,获得积分10
4秒前
王倩完成签到 ,获得积分10
4秒前
5秒前
唐山完成签到,获得积分10
6秒前
6秒前
在水一方应助无误采纳,获得10
6秒前
不坠完成签到,获得积分10
6秒前
Akim应助友好真采纳,获得10
6秒前
lxt819发布了新的文献求助10
8秒前
烤地瓜的z完成签到,获得积分10
9秒前
科研怪完成签到 ,获得积分10
10秒前
小白完成签到,获得积分10
11秒前
橙子完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
方班术完成签到,获得积分10
15秒前
jenningseastera应助kysl采纳,获得10
15秒前
王大卫完成签到,获得积分20
16秒前
17秒前
18秒前
方班术发布了新的文献求助10
18秒前
Murphy发布了新的文献求助30
19秒前
19秒前
20秒前
21秒前
尉迟衣发布了新的文献求助10
23秒前
桐桐应助小小采纳,获得10
24秒前
25秒前
Evooolet发布了新的文献求助10
25秒前
ren发布了新的文献求助10
25秒前
zhou完成签到 ,获得积分10
25秒前
kirin完成签到,获得积分10
26秒前
爆米花应助yc采纳,获得50
27秒前
28秒前
Akim应助bhkwxdxy采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538469
求助须知:如何正确求助?哪些是违规求助? 3973001
关于积分的说明 12307420
捐赠科研通 3639782
什么是DOI,文献DOI怎么找? 2004088
邀请新用户注册赠送积分活动 1039525
科研通“疑难数据库(出版商)”最低求助积分说明 928849