Evaluation of Different Methods for Identification of Structural Alerts Using Chemical Ames Mutagenicity Data Set as a Benchmark

计算机科学 水准点(测量) 数据挖掘 鉴定(生物学) 冗余(工程) 指纹(计算) 集合(抽象数据类型) 人工智能 大地测量学 植物 生物 操作系统 程序设计语言 地理
作者
Hongbin Yang,Jie Li,Zengrui Wu,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:30 (6): 1355-1364 被引量:59
标识
DOI:10.1021/acs.chemrestox.7b00083
摘要

Identification of structural alerts for toxicity is useful in drug discovery and other fields such as environmental protection. With structural alerts, researchers can quickly identify potential toxic compounds and learn how to modify them. Hence, it is important to determine structural alerts from a large number of compounds quickly and accurately. There are already many methods reported for identification of structural alerts. However, how to evaluate those methods is a problem. In this paper, we tried to evaluate four of the methods for monosubstructure identification with three indices including accuracy rate, coverage rate, and information gain to compare their advantages and disadvantages. The Kazius' Ames mutagenicity data set was used as the benchmark, and the four methods were MoSS (graph-based), SARpy (fragment-based), and two fingerprint-based methods including Bioalerts and the fingerprint (FP) method we previously used. The results showed that Bioalerts and FP could detect key substructures with high accuracy and coverage rates because they allowed unclosed rings and wildcard atom or bond types. However, they also resulted in redundancy so that their predictive performance was not as good as that of SARpy. SARpy was competitive in predictive performance in both training set and external validation set. These results might be helpful for users to select appropriate methods and further development of methods for identification of structural alerts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meituanqishoumi完成签到,获得积分10
刚刚
yyy发布了新的文献求助10
1秒前
2秒前
2秒前
wanci应助栗少海采纳,获得10
3秒前
燕烟完成签到,获得积分10
4秒前
科研通AI2S应助shanage采纳,获得10
4秒前
科研通AI6应助千早爱音采纳,获得10
5秒前
仁爱的伯云完成签到,获得积分10
6秒前
7秒前
sunshine发布了新的文献求助10
8秒前
大眼怪发布了新的文献求助10
8秒前
ruirui_love发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
汉堡包应助燕烟采纳,获得10
10秒前
11秒前
慕青应助Sc1ivez采纳,获得10
11秒前
赘婿应助Sc1ivez采纳,获得10
12秒前
仙林AK47完成签到,获得积分10
14秒前
Tbangl发布了新的文献求助10
15秒前
kittency完成签到 ,获得积分10
15秒前
海拾月完成签到,获得积分10
16秒前
js110完成签到,获得积分10
16秒前
栗少海发布了新的文献求助10
18秒前
18秒前
夜已深完成签到,获得积分10
19秒前
bkagyin应助ruirui_love采纳,获得10
19秒前
CipherSage应助霸气的梦露采纳,获得10
20秒前
张海新完成签到 ,获得积分10
20秒前
海拾月发布了新的文献求助30
20秒前
20秒前
梁帅哥完成签到,获得积分10
20秒前
lxy完成签到,获得积分10
20秒前
所所应助爱吃咸鱼的夜猫采纳,获得10
20秒前
大个应助阳光采纳,获得10
21秒前
23秒前
24秒前
美好斓发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484090
求助须知:如何正确求助?哪些是违规求助? 4584405
关于积分的说明 14397691
捐赠科研通 4514382
什么是DOI,文献DOI怎么找? 2473969
邀请新用户注册赠送积分活动 1459937
关于科研通互助平台的介绍 1433307