Localized Weighted Sum Method for Many-Objective Optimization

进化算法 水准点(测量) 数学优化 多目标优化 切比雪夫滤波器 分解 数学 计算机科学 先验与后验 算法 进化计算 最优化问题 地理 哲学 数学分析 认识论 生物 生态学 大地测量学
作者
Rui Wang,Zhongbao Zhou,Hisao Ishibuchi,Tianjun Liao,Tao Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 3-18 被引量:295
标识
DOI:10.1109/tevc.2016.2611642
摘要

Decomposition via scalarization is a basic concept for multiobjective optimization. The weighted sum (WS) method, a frequently used scalarizing method in decomposition-based evolutionary multiobjective (EMO) algorithms, has good features such as computationally easy and high search efficiency, compared to other scalarizing methods. However, it is often criticized by the loss of effect on nonconvex problems. This paper seeks to utilize advantages of the WS method, without suffering from its disadvantage, to solve many-objective problems. A novel decomposition-based EMO algorithm called multiobjective evolutionary algorithm based on decomposition LWS (MOEA/D-LWS) is proposed in which the WS method is applied in a local manner. That is, for each search direction, the optimal solution is selected only amongst its neighboring solutions. The neighborhood is defined using a hypercone. The apex angle of a hypervcone is determined automatically in a priori. The effectiveness of MOEA/D-LWS is demonstrated by comparing it against three variants of MOEA/D, i.e., MOEA/D using Chebyshev method, MOEA/D with an adaptive use of WS and Chebyshev method, MOEA/D with a simultaneous use of WS and Chebyshev method, and four state-of-the-art many-objective EMO algorithms, i.e., preference-inspired co-evolutionary algorithm, hypervolume-based evolutionary, θ-dominance-based algorithm, and SPEA2+SDE for the WFG benchmark problems with up to seven conflicting objectives. Experimental results show that MOEA/D-LWS outperforms the comparison algorithms for most of test problems, and is a competitive algorithm for many-objective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zuoaogui发布了新的文献求助10
1秒前
ZHY完成签到 ,获得积分20
1秒前
Sky关闭了Sky文献求助
1秒前
迪鸣完成签到,获得积分10
2秒前
灵巧的翠风完成签到,获得积分10
2秒前
平淡小白菜完成签到,获得积分10
3秒前
小鸣完成签到 ,获得积分10
3秒前
哦吼吼吼吼完成签到 ,获得积分10
3秒前
是木易呀发布了新的文献求助30
4秒前
迷人夜香发布了新的文献求助30
4秒前
大个应助英俊的胜采纳,获得10
5秒前
purple完成签到 ,获得积分10
5秒前
郝绝山完成签到,获得积分10
5秒前
7秒前
郝绝山发布了新的文献求助10
9秒前
ZHY关注了科研通微信公众号
10秒前
11秒前
Orange应助cryjslong采纳,获得10
11秒前
六六发布了新的文献求助50
12秒前
12秒前
守墓人完成签到 ,获得积分10
12秒前
ZYT完成签到,获得积分10
15秒前
16秒前
糟糕的沂发布了新的文献求助10
16秒前
16秒前
18秒前
王若红关注了科研通微信公众号
18秒前
18秒前
小黄完成签到,获得积分20
18秒前
19秒前
20秒前
pluto应助狗123采纳,获得10
20秒前
学术巨婴完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
22秒前
23秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784273
求助须知:如何正确求助?哪些是违规求助? 3329356
关于积分的说明 10241811
捐赠科研通 3044836
什么是DOI,文献DOI怎么找? 1671368
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759298