材料科学
兴奋剂
阴极
电化学
化学工程
铝
涂层
锂(药物)
Crystal(编程语言)
降级(电信)
离子
晶体结构
表层
复合材料
图层(电子)
纳米技术
光电子学
化学物理
结晶学
电极
电子工程
物理化学
化学
计算机科学
量子力学
程序设计语言
医学
内分泌学
工程类
物理
作者
Fanghui Du,Xiang Li,Ling Wu,Die Hu,Qun Zhou,Pengpeng Sun,Tao Xu,Chengxiang Mei,Qi Hao,Zhongxu Fan,Junwei Zheng
标识
DOI:10.1016/j.ceramint.2021.01.161
摘要
Abstract Ni-rich materials, as one type of cathode materials for next-generation lithium-ion batteries, suffer from poor cycling stability due to severe structural degradation and surface deterioration. Lattice doping is an effective method to stabilize crystal structures, yet it has little effect on inhibiting surface side reactions. Herein, we demonstrate a strategy that can tailor the distribution of doping element Al in the entire secondary sphere in a controllable way to simultaneously stabilize the crystal structure and surface of the cathode material. The strategy takes advantage of the interdiffusion of elements at the solid-solid interface formed by aluminum-containing species that uniformly cover the surface of the Ni0.8Co0.1Mn0.1(OH)2 precursor at a high temperature. The extent of Al doping in the materials can be properly regulated by the amount of aluminum-containing species to generate uniform doping, gradient doping, and gradient doping with a thin Al coating layer. As a result, the Al gradient-doped cathode material exhibits excellent capacity retention of 81.9% after 500 cycles at 2C, which is much higher than the capacity retention of 54.3% for the pristine counterpart.
科研通智能强力驱动
Strongly Powered by AbleSci AI