Inter-Vehicle Distance Estimation Method Based on Monocular Vision Using 3D Detection

单眼 计算机视觉 单目视觉 人工智能 测距 稳健性(进化) 激光雷达 计算机科学 全球定位系统 地理 遥感 生物化学 电信 基因 化学
作者
Ting Zhe,Liqin Huang,Qiang Wu,Jianjia Zhang,Chenhao Pei,Liangyu Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 4907-4919 被引量:61
标识
DOI:10.1109/tvt.2020.2977623
摘要

Most autonomous vehicles build their perception systems on expensive sensors, such as LIDAR, RADAR, and high-precision Global Positioning System (GPS). However, cameras can provide richer sensing at a considerably lower cost, this makes them a more appealing alternative. A driving assistance system (DAS) based on monocular vision has gradually become a research hotspot, and inter-vehicle distance estimation based on monocular vision is an important technology in DAS. There are still constrains in the existing methods for estimating the inter-vehicle distance based on monocular vision, such as low accuracy when distance is larger, unstable accuracy for different types vehicles, and significantly poor performance on distance estimation for severely occluded vehicles. To improve the accuracy and robustness of ranging results, this study proposes a monocular vision end-to-end inter-vehicle distance estimation method based on 3D detection. The actual area of the rare view of the vehicle and the corresponding projection area in the image are obtained by 3D detection method. An area-distance geometric model is then established on the basis of the camera projection principle to recover distance. Our method shows its potential in complex traffic scenarios by testing the test set data provided on the real-world computer vision benchmark, KITTI. The experimental results have superior performance than the existing published methods. Moreover, the accuracy of occluded vehicle ranging results can reach approximately $98\%$, while the accuracy deviation between vehicles with different visual angles is less than $2\%$.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助坚定的剑心采纳,获得10
刚刚
深情安青应助pipi采纳,获得10
刚刚
小黑不黑发布了新的文献求助10
1秒前
standhuang完成签到,获得积分10
1秒前
袁金广完成签到,获得积分10
1秒前
aaiirrii发布了新的文献求助20
1秒前
雪糕完成签到 ,获得积分10
2秒前
美好寒梦完成签到,获得积分10
2秒前
俏皮代丝完成签到,获得积分10
3秒前
4秒前
5秒前
QGK发布了新的文献求助10
5秒前
墨殇璃发布了新的文献求助10
6秒前
6秒前
standhuang发布了新的文献求助10
6秒前
Bio应助guozizi采纳,获得30
6秒前
6秒前
LJ发布了新的文献求助10
9秒前
Phantom1234完成签到,获得积分10
9秒前
自由天抒应助cyndi采纳,获得10
9秒前
小二郎应助韩明佐采纳,获得10
9秒前
smiling完成签到,获得积分10
10秒前
ketty完成签到,获得积分10
10秒前
11秒前
小鱼完成签到,获得积分10
12秒前
豆豆完成签到,获得积分10
12秒前
12秒前
12秒前
zuhayr完成签到,获得积分10
12秒前
JamesPei应助活力小笼包采纳,获得10
13秒前
nancy发布了新的文献求助10
13秒前
14秒前
pipi完成签到,获得积分20
14秒前
14秒前
XDF发布了新的文献求助10
16秒前
16秒前
18秒前
坚定的剑心完成签到,获得积分10
18秒前
pipi发布了新的文献求助10
18秒前
维洛尼亚完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462912
求助须知:如何正确求助?哪些是违规求助? 3925880
关于积分的说明 12182640
捐赠科研通 3578361
什么是DOI,文献DOI怎么找? 1965960
邀请新用户注册赠送积分活动 1004730
科研通“疑难数据库(出版商)”最低求助积分说明 899061