氢键
化学物理
分子
离子
分子动力学
氢
化学
从头算
旋转扩散
扩散
铵
计算化学
旋转动力学
热力学
物理
有机化学
作者
Jianqing Guo,Liying Zhou,Andrea Zen,Angelos Michaelides,Xifan Wu,Enge Wang,Limei Xu,Ji Chen
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:5
标识
DOI:10.48550/arxiv.2009.04727
摘要
Understanding the hydration and diffusion of ions in water at the molecular level is a topic of widespread importance. The ammonium ion (NH$_4^+$) is an exemplar system that has received attention for decades because of its complex hydration structure and relevance in industry. Here we report a study of the hydration and the rotational diffusion of NH$_4^+$ in water using ab initio molecular dynamics simulations and quantum Monte Carlo calculations. We find that the hydration structure of NH$_4^+$ features bifurcated hydrogen bonds, which leads to a rotational mechanism involving the simultaneous switching of a pair of bifurcated hydrogen bonds. The proposed hydration structure and rotational mechanism are supported by existing experimental measurements, and they also help to rationalize the measured fast rotation of NH$_4^+$ in water. This study highlights how subtle changes in the electronic structure of hydrogen bonds impacts the hydration structure, which consequently affects the dynamics of ions and molecules in hydrogen bonded systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI